These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
379 related articles for article (PubMed ID: 29558892)
1. Global analysis of primary mesenchyme cell cis-regulatory modules by chromatin accessibility profiling. Shashikant T; Khor JM; Ettensohn CA BMC Genomics; 2018 Mar; 19(1):206. PubMed ID: 29558892 [TBL] [Abstract][Full Text] [Related]
2. Gene regulatory networks and developmental plasticity in the early sea urchin embryo: alternative deployment of the skeletogenic gene regulatory network. Ettensohn CA; Kitazawa C; Cheers MS; Leonard JD; Sharma T Development; 2007 Sep; 134(17):3077-87. PubMed ID: 17670786 [TBL] [Abstract][Full Text] [Related]
3. Architecture and evolution of the Khor JM; Ettensohn CA Elife; 2022 Feb; 11():. PubMed ID: 35212624 [TBL] [Abstract][Full Text] [Related]
4. Signal-dependent regulation of the sea urchin skeletogenic gene regulatory network. Sun Z; Ettensohn CA Gene Expr Patterns; 2014 Nov; 16(2):93-103. PubMed ID: 25460514 [TBL] [Abstract][Full Text] [Related]
5. Precise cis-regulatory control of spatial and temporal expression of the alx-1 gene in the skeletogenic lineage of s. purpuratus. Damle S; Davidson EH Dev Biol; 2011 Sep; 357(2):505-17. PubMed ID: 21723273 [TBL] [Abstract][Full Text] [Related]
6. Genome-wide analysis of the skeletogenic gene regulatory network of sea urchins. Rafiq K; Shashikant T; McManus CJ; Ettensohn CA Development; 2014 Feb; 141(4):950-61. PubMed ID: 24496631 [TBL] [Abstract][Full Text] [Related]
7. Genome-wide identification of binding sites and gene targets of Alx1, a pivotal regulator of echinoderm skeletogenesis. Khor JM; Guerrero-Santoro J; Ettensohn CA Development; 2019 Aug; 146(16):. PubMed ID: 31331943 [TBL] [Abstract][Full Text] [Related]
8. Widespread priming of transcriptional regulatory elements by incipient accessibility or RNA polymerase II pause in early embryos of the sea urchin Strongylocentrotus purpuratus. Arenas-Mena C; Akin S Genetics; 2023 Oct; 225(2):. PubMed ID: 37551428 [TBL] [Abstract][Full Text] [Related]
9. Genome-wide discovery of active regulatory elements and transcription factor footprints in Ho MCW; Quintero-Cadena P; Sternberg PW Genome Res; 2017 Dec; 27(12):2108-2119. PubMed ID: 29074739 [TBL] [Abstract][Full Text] [Related]
10. Genome-wide analysis of chromatin accessibility using ATAC-seq. Shashikant T; Ettensohn CA Methods Cell Biol; 2019; 151():219-235. PubMed ID: 30948010 [TBL] [Abstract][Full Text] [Related]
11. The genomic regulatory control of skeletal morphogenesis in the sea urchin. Rafiq K; Cheers MS; Ettensohn CA Development; 2012 Feb; 139(3):579-90. PubMed ID: 22190640 [TBL] [Abstract][Full Text] [Related]
12. From genome to anatomy: The architecture and evolution of the skeletogenic gene regulatory network of sea urchins and other echinoderms. Shashikant T; Khor JM; Ettensohn CA Genesis; 2018 Oct; 56(10):e23253. PubMed ID: 30264451 [TBL] [Abstract][Full Text] [Related]
13. Twist is an essential regulator of the skeletogenic gene regulatory network in the sea urchin embryo. Wu SY; Yang YP; McClay DR Dev Biol; 2008 Jul; 319(2):406-15. PubMed ID: 18495103 [TBL] [Abstract][Full Text] [Related]
14. The control of foxN2/3 expression in sea urchin embryos and its function in the skeletogenic gene regulatory network. Rho HK; McClay DR Development; 2011 Mar; 138(5):937-45. PubMed ID: 21303847 [TBL] [Abstract][Full Text] [Related]
15. The Snail repressor is required for PMC ingression in the sea urchin embryo. Wu SY; McClay DR Development; 2007 Mar; 134(6):1061-70. PubMed ID: 17287249 [TBL] [Abstract][Full Text] [Related]
16. The evolution of a new cell type was associated with competition for a signaling ligand. Ettensohn CA; Adomako-Ankomah A PLoS Biol; 2019 Sep; 17(9):e3000460. PubMed ID: 31532765 [TBL] [Abstract][Full Text] [Related]
17. Lessons from a transcription factor: Alx1 provides insights into gene regulatory networks, cellular reprogramming, and cell type evolution. Ettensohn CA; Guerrero-Santoro J; Khor JM Curr Top Dev Biol; 2022; 146():113-148. PubMed ID: 35152981 [TBL] [Abstract][Full Text] [Related]
18. microRNA-31 modulates skeletal patterning in the sea urchin embryo. Stepicheva NA; Song JL Development; 2015 Nov; 142(21):3769-80. PubMed ID: 26400092 [TBL] [Abstract][Full Text] [Related]
19. microRNA-31 regulates skeletogenesis by direct suppression of Eve and Wnt1. Sampilo NF; Stepicheva NA; Song JL Dev Biol; 2021 Apr; 472():98-114. PubMed ID: 33484703 [TBL] [Abstract][Full Text] [Related]
20. Developmental cis-regulatory analysis of the cyclin D gene in the sea urchin Strongylocentrotus purpuratus. McCarty CM; Coffman JA Biochem Biophys Res Commun; 2013 Oct; 440(3):413-8. PubMed ID: 24090975 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]