These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
253 related articles for article (PubMed ID: 29559242)
1. Parameters affecting mechanical and thermal responses in bone drilling: A review. Lee J; Chavez CL; Park J J Biomech; 2018 Apr; 71():4-21. PubMed ID: 29559242 [TBL] [Abstract][Full Text] [Related]
2. Novel crescent drill design and mechanistic force modeling for thrust force reduction in bone drilling. Liu S; Wu D; Zhao J; Yang T; Sun J; Gong K Med Eng Phys; 2022 May; 103():103795. PubMed ID: 35500995 [TBL] [Abstract][Full Text] [Related]
3. Experimental and analytical investigation of the thermal necrosis in high-speed drilling of bone. Shakouri E; Sadeghi MH; Maerefat M; Shajari S Proc Inst Mech Eng H; 2014 Apr; 228(4):330-41. PubMed ID: 24569922 [TBL] [Abstract][Full Text] [Related]
4. In vitro comparison of conventional surgical and rotary ultrasonic bone drilling techniques. Gupta V; Singh RP; Pandey PM; Gupta R Proc Inst Mech Eng H; 2020 Apr; 234(4):398-411. PubMed ID: 32026750 [TBL] [Abstract][Full Text] [Related]
5. Effects of non-Fourier bioheat transfer on bone drilling temperature in orthopedic surgery: Theoretical and in vitro experimental investigation. Kabiri A; Talaee MR Proc Inst Mech Eng H; 2022 Jun; 236(6):811-824. PubMed ID: 35486132 [TBL] [Abstract][Full Text] [Related]
6. Experimental investigations of forces and torque in conventional and ultrasonically-assisted drilling of cortical bone. Alam K; Mitrofanov AV; Silberschmidt VV Med Eng Phys; 2011 Mar; 33(2):234-9. PubMed ID: 21044856 [TBL] [Abstract][Full Text] [Related]
7. Experimental investigations and statistical modeling of cutting force and torque in rotary ultrasonic bone drilling of human cadaver bone. Singh RP; Pandey PM; Mridha AR; Joshi T Proc Inst Mech Eng H; 2020 Feb; 234(2):148-162. PubMed ID: 31749398 [TBL] [Abstract][Full Text] [Related]
8. In-vitro experimental analysis and numerical study of temperature in bone drilling. Alam K; Khan M; Muhammad R; Qamar SZ; Silberschmidt VV Technol Health Care; 2015; 23(6):775-83. PubMed ID: 26409522 [TBL] [Abstract][Full Text] [Related]
9. Rotary ultrasonic drilling on bone: A novel technique to put an end to thermal injury to bone. Gupta V; Pandey PM; Gupta RK; Mridha AR Proc Inst Mech Eng H; 2017 Mar; 231(3):189-196. PubMed ID: 28116985 [TBL] [Abstract][Full Text] [Related]
10. Effect of process parameters on the temperature changes during robotic bone drilling. Han Y; Cai C; Lv Q; Song Y; Zhang Q Proc Inst Mech Eng H; 2022 Aug; 236(8):1129-1138. PubMed ID: 35821641 [TBL] [Abstract][Full Text] [Related]
11. Evaluation of the parameters affecting bone temperature during drilling using a three-dimensional dynamic elastoplastic finite element model. Chen YC; Tu YK; Zhuang JY; Tsai YJ; Yen CY; Hsiao CK Med Biol Eng Comput; 2017 Nov; 55(11):1949-1957. PubMed ID: 28353132 [TBL] [Abstract][Full Text] [Related]
12. Effect of sequential hole enlargement on cortical bone temperature during drilling of 6.2-mm-diameter transcortical holes in the third metacarpal bones of horse cadavers. Lescun TB; Frank EA; Zacharias JR; Daggy JK; Moore GE Am J Vet Res; 2011 Dec; 72(12):1687-94. PubMed ID: 22126699 [TBL] [Abstract][Full Text] [Related]
13. Comprehensive analysis on orthopedic drilling: A state-of-the-art review. Jamil M; Rafique S; Khan AM; Hegab H; Mia M; Gupta MK; Song Q Proc Inst Mech Eng H; 2020 Jun; 234(6):537-561. PubMed ID: 32186229 [TBL] [Abstract][Full Text] [Related]
14. Numerical evaluation of sequential bone drilling strategies based on thermal damage. Tai BL; Palmisano AC; Belmont B; Irwin TA; Holmes J; Shih AJ Med Eng Phys; 2015 Sep; 37(9):855-61. PubMed ID: 26163230 [TBL] [Abstract][Full Text] [Related]
15. Feed rate control in robotic bone drilling process. Boiadjiev T; Boiadjiev G; Delchev K; Chavdarov I; Kastelov R Proc Inst Mech Eng H; 2021 Mar; 235(3):273-280. PubMed ID: 33231113 [TBL] [Abstract][Full Text] [Related]
16. Optimization of drilling parameters for thermal bone necrosis prevention. Akhbar MFA; Yusoff AR Technol Health Care; 2018; 26(4):621-635. PubMed ID: 29966212 [TBL] [Abstract][Full Text] [Related]
17. In vitro comparison of cortical bone temperature generation between traditional sequential drilling and a newly designed step drill in the equine third metacarpal bone. Bubeck KA; García-López J; Maranda LS Vet Comp Orthop Traumatol; 2009; 22(6):442-7. PubMed ID: 19876527 [TBL] [Abstract][Full Text] [Related]
18. Assessment of thermal necrosis risk regions for different bone qualities as a function of drilling parameters. Chen YC; Tu YK; Tsai YJ; Tsai YS; Yen CY; Yang SC; Hsiao CK Comput Methods Programs Biomed; 2018 Aug; 162():253-261. PubMed ID: 29903492 [TBL] [Abstract][Full Text] [Related]
19. An in vitro study of thermal necrosis in ultrasonic-assisted drilling of bone. Shakouri E; Sadeghi MH; Karafi MR; Maerefat M; Farzin M Proc Inst Mech Eng H; 2015 Feb; 229(2):137-49. PubMed ID: 25767150 [TBL] [Abstract][Full Text] [Related]
20. Experimental Study of Thrust Force and Torque for Drilling Cortical Bone. Sui J; Sugita N Ann Biomed Eng; 2019 Mar; 47(3):802-812. PubMed ID: 30627838 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]