BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

193 related articles for article (PubMed ID: 29559534)

  • 1. Endogenous superoxide is a key effector of the oxygen sensitivity of a model obligate anaerobe.
    Lu Z; Sethu R; Imlay JA
    Proc Natl Acad Sci U S A; 2018 Apr; 115(14):E3266-E3275. PubMed ID: 29559534
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Do reactive oxygen species or does oxygen itself confer obligate anaerobiosis? The case of Bacteroides thetaiotaomicron.
    Khademian M; Imlay JA
    Mol Microbiol; 2020 Aug; 114(2):333-347. PubMed ID: 32301184
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The aerobic electron flux is deficient in fumarate respiration of a strict anaerobe Bacteroides thetaiotaomicron.
    Lin L; Zou M; Lu Z
    Biochem Biophys Res Commun; 2022 Jul; 614():213-218. PubMed ID: 35623108
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The Fumarate Reductase of Bacteroides thetaiotaomicron, unlike That of Escherichia coli, Is Configured so that It Does Not Generate Reactive Oxygen Species.
    Lu Z; Imlay JA
    mBio; 2017 Jan; 8(1):. PubMed ID: 28049145
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An anaerobic bacterium, Bacteroides thetaiotaomicron, uses a consortium of enzymes to scavenge hydrogen peroxide.
    Mishra S; Imlay JA
    Mol Microbiol; 2013 Dec; 90(6):1356-71. PubMed ID: 24164536
    [TBL] [Abstract][Full Text] [Related]  

  • 6. How does oxygen inhibit central metabolism in the obligate anaerobe Bacteroides thetaiotaomicron.
    Pan N; Imlay JA
    Mol Microbiol; 2001 Mar; 39(6):1562-71. PubMed ID: 11260473
    [TBL] [Abstract][Full Text] [Related]  

  • 7. How oxygen damages microbes: oxygen tolerance and obligate anaerobiosis.
    Imlay JA
    Adv Microb Physiol; 2002; 46():111-53. PubMed ID: 12073652
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A conserved motif liganding the [4Fe-4S] cluster in [4Fe-4S] fumarases prevents irreversible inactivation of the enzyme during hydrogen peroxide stress.
    Lu Z; Imlay JA
    Redox Biol; 2019 Sep; 26():101296. PubMed ID: 31465957
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The vulnerability of radical SAM enzymes to oxidants and soft metals.
    Rohaun SK; Imlay JA
    Redox Biol; 2022 Nov; 57():102495. PubMed ID: 36240621
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Carboxyspermidine decarboxylase of the prominent intestinal microbiota species Bacteroides thetaiotaomicron is required for spermidine biosynthesis and contributes to normal growth.
    Sakanaka M; Sugiyama Y; Kitakata A; Katayama T; Kurihara S
    Amino Acids; 2016 Oct; 48(10):2443-51. PubMed ID: 27118128
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Tellurite-mediated disabling of [4Fe-4S] clusters of Escherichia coli dehydratases.
    Calderón IL; Elías AO; Fuentes EL; Pradenas GA; Castro ME; Arenas FA; Pérez JM; Vásquez CC
    Microbiology (Reading); 2009 Jun; 155(Pt 6):1840-1846. PubMed ID: 19383690
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Anti-stress proteins produced by Bacteroides thetaiotaomicron after nutrient starvation.
    Hochart-Behra AC; Drobecq H; Tourret M; Dubreuil L; Behra-Miellet J
    Anaerobe; 2014 Aug; 28():18-23. PubMed ID: 24785350
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Prioritization of polysaccharide utilization and control of regulator activation in Bacteroides thetaiotaomicron.
    Schwalm ND; Townsend GE; Groisman EA
    Mol Microbiol; 2017 Apr; 104(1):32-45. PubMed ID: 28009067
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Bile-induced biofilm formation in
    Lopes A-A; Vendrell-Fernández S; Deschamps J; Georgeault S; Cokelaer T; Briandet R; Ghigo J-M
    mBio; 2024 May; 15(5):e0348823. PubMed ID: 38534200
    [No Abstract]   [Full Text] [Related]  

  • 15. Inactivation of a single gene enables microaerobic growth of the obligate anaerobe Bacteroides fragilis.
    Meehan BM; Baughn AD; Gallegos R; Malamy MH
    Proc Natl Acad Sci U S A; 2012 Jul; 109(30):12153-8. PubMed ID: 22778399
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Response of hydroperoxidase and superoxide dismutase deficient mutants of Escherichia coli K-12 to oxidative stress.
    Schellhorn HE; Hassan HM
    Can J Microbiol; 1988 Oct; 34(10):1171-6. PubMed ID: 2848619
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Investigation and Alteration of Organic Acid Synthesis Pathways in the Mammalian Gut Symbiont Bacteroides thetaiotaomicron.
    Porter NT; Larsbrink J
    Microbiol Spectr; 2022 Feb; 10(1):e0231221. PubMed ID: 35196806
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Sensing and protecting against superoxide stress in Escherichia coli--how many ways are there to trigger soxRS response?
    Touati D
    Redox Rep; 2000; 5(5):287-93. PubMed ID: 11145103
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Whole-genome sequencing and comparative analysis of the genomes of Bacteroides thetaiotaomicron and Escherichia coli isolated from a healthy resident in Vietnam.
    Mohsin M; Tanaka K; Kawahara R; Kondo S; Noguchi H; Motooka D; Nakamura S; Khong DT; Nguyen TN; Hoang TN; Yamamoto Y
    J Glob Antimicrob Resist; 2020 Jun; 21():65-67. PubMed ID: 32200128
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Intracellular hydrogen peroxide and superoxide poison 3-deoxy-D-arabinoheptulosonate 7-phosphate synthase, the first committed enzyme in the aromatic biosynthetic pathway of Escherichia coli.
    Sobota JM; Gu M; Imlay JA
    J Bacteriol; 2014 Jun; 196(11):1980-91. PubMed ID: 24659765
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.