These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

383 related articles for article (PubMed ID: 29559838)

  • 1. Decellularized Hydrogels in Bone Tissue Engineering: A Topical Review.
    Pacifici A; Laino L; Gargari M; Guzzo F; Velandia Luz A; Polimeni A; Pacifici L
    Int J Med Sci; 2018; 15(5):492-497. PubMed ID: 29559838
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Preparation of Polymeric and Composite Scaffolds by 3D Bioprinting.
    Mora-Boza A; Lopez-Donaire ML
    Adv Exp Med Biol; 2018; 1058():221-245. PubMed ID: 29691824
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Decellularized Bone Matrix Scaffold for Bone Regeneration.
    Chen G; Lv Y
    Methods Mol Biol; 2018; 1577():239-254. PubMed ID: 28770492
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fabrication of Corneal Extracellular Matrix-Derived Hydrogels.
    Ahearne M; Fernández-Pérez J
    Methods Mol Biol; 2020; 2145():159-168. PubMed ID: 32542606
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Computational model-informed design and bioprinting of cell-patterned constructs for bone tissue engineering.
    Carlier A; Skvortsov GA; Hafezi F; Ferraris E; Patterson J; Koç B; Van Oosterwyck H
    Biofabrication; 2016 May; 8(2):025009. PubMed ID: 27187017
    [TBL] [Abstract][Full Text] [Related]  

  • 6. 3D bioprinting of urethra with PCL/PLCL blend and dual autologous cells in fibrin hydrogel: An in vitro evaluation of biomimetic mechanical property and cell growth environment.
    Zhang K; Fu Q; Yoo J; Chen X; Chandra P; Mo X; Song L; Atala A; Zhao W
    Acta Biomater; 2017 Mar; 50():154-164. PubMed ID: 27940192
    [TBL] [Abstract][Full Text] [Related]  

  • 7.
    Mansour A; Mezour MA; Badran Z; Tamimi F
    Tissue Eng Part A; 2017 Dec; 23(23-24):1436-1451. PubMed ID: 28562183
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Manufacturing of hydrogel biomaterials with controlled mechanical properties for tissue engineering applications.
    Vedadghavami A; Minooei F; Mohammadi MH; Khetani S; Rezaei Kolahchi A; Mashayekhan S; Sanati-Nezhad A
    Acta Biomater; 2017 Oct; 62():42-63. PubMed ID: 28736220
    [TBL] [Abstract][Full Text] [Related]  

  • 9. BoneMA-synthesis and characterization of a methacrylated bone-derived hydrogel for bioprinting of
    Parthiban SP; Athirasala A; Tahayeri A; Abdelmoniem R; George A; Bertassoni LE
    Biofabrication; 2021 Apr; 13(3):. PubMed ID: 35130535
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Biocompatibility of hydrogel-based scaffolds for tissue engineering applications.
    Naahidi S; Jafari M; Logan M; Wang Y; Yuan Y; Bae H; Dixon B; Chen P
    Biotechnol Adv; 2017 Sep; 35(5):530-544. PubMed ID: 28558979
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Decellularized ECM hydrogels: prior use considerations, applications, and opportunities in tissue engineering and biofabrication.
    Kort-Mascort J; Flores-Torres S; Peza-Chavez O; Jang JH; Pardo LA; Tran SD; Kinsella J
    Biomater Sci; 2023 Jan; 11(2):400-431. PubMed ID: 36484344
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Bioprinting and Biofabrication with Peptide and Protein Biomaterials.
    Boyd-Moss M; Fox K; Brandt M; Nisbet D; Williams R
    Adv Exp Med Biol; 2017; 1030():95-129. PubMed ID: 29081051
    [TBL] [Abstract][Full Text] [Related]  

  • 13. 3D bioprinting of structural proteins.
    Włodarczyk-Biegun MK; Del Campo A
    Biomaterials; 2017 Jul; 134():180-201. PubMed ID: 28477541
    [TBL] [Abstract][Full Text] [Related]  

  • 14. 3D bioprinting of methacrylated hyaluronic acid (MeHA) hydrogel with intrinsic osteogenicity.
    Poldervaart MT; Goversen B; de Ruijter M; Abbadessa A; Melchels FPW; Öner FC; Dhert WJA; Vermonden T; Alblas J
    PLoS One; 2017; 12(6):e0177628. PubMed ID: 28586346
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Bioprinting for vascular and vascularized tissue biofabrication.
    Datta P; Ayan B; Ozbolat IT
    Acta Biomater; 2017 Mar; 51():1-20. PubMed ID: 28087487
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Recent Strategies in Fabrication of Gradient Hydrogels for Tissue Engineering Applications.
    Jo H; Yoon M; Gajendiran M; Kim K
    Macromol Biosci; 2020 Mar; 20(3):e1900300. PubMed ID: 31886614
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Three-Dimensional Bioprinting for Regenerative Dentistry and Craniofacial Tissue Engineering.
    Obregon F; Vaquette C; Ivanovski S; Hutmacher DW; Bertassoni LE
    J Dent Res; 2015 Sep; 94(9 Suppl):143S-52S. PubMed ID: 26124216
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The bioink: A comprehensive review on bioprintable materials.
    Hospodiuk M; Dey M; Sosnoski D; Ozbolat IT
    Biotechnol Adv; 2017; 35(2):217-239. PubMed ID: 28057483
    [TBL] [Abstract][Full Text] [Related]  

  • 19. 3-Dimensional cell-laden nano-hydroxyapatite/protein hydrogels for bone regeneration applications.
    Sadat-Shojai M; Khorasani MT; Jamshidi A
    Mater Sci Eng C Mater Biol Appl; 2015 Apr; 49():835-843. PubMed ID: 25687015
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cell-matrix mechanical interaction in electrospun polymeric scaffolds for tissue engineering: Implications for scaffold design and performance.
    Kennedy KM; Bhaw-Luximon A; Jhurry D
    Acta Biomater; 2017 Mar; 50():41-55. PubMed ID: 28011142
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 20.