These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
318 related articles for article (PubMed ID: 29559885)
1. A Compact Closed-Loop Optogenetics System Based on Artifact-Free Transparent Graphene Electrodes. Liu X; Lu Y; Iseri E; Shi Y; Kuzum D Front Neurosci; 2018; 12():132. PubMed ID: 29559885 [TBL] [Abstract][Full Text] [Related]
2. Deep 2-photon imaging and artifact-free optogenetics through transparent graphene microelectrode arrays. Thunemann M; Lu Y; Liu X; Kılıç K; Desjardins M; Vandenberghe M; Sadegh S; Saisan PA; Cheng Q; Weldy KL; Lyu H; Djurovic S; Andreassen OA; Dale AM; Devor A; Kuzum D Nat Commun; 2018 May; 9(1):2035. PubMed ID: 29789548 [TBL] [Abstract][Full Text] [Related]
3. Graphene neural interfaces for artifact free optogenetics. Hongming Lyu ; Xin Liu ; Rogers N; Gilja V; Kuzum D Annu Int Conf IEEE Eng Med Biol Soc; 2016 Aug; 2016():4204-4207. PubMed ID: 28269210 [TBL] [Abstract][Full Text] [Related]
4. Fabrication and utility of a transparent graphene neural electrode array for electrophysiology, in vivo imaging, and optogenetics. Park DW; Brodnick SK; Ness JP; Atry F; Krugner-Higby L; Sandberg A; Mikael S; Richner TJ; Novello J; Kim H; Baek DH; Bong J; Frye ST; Thongpang S; Swanson KI; Lake W; Pashaie R; Williams JC; Ma Z Nat Protoc; 2016 Nov; 11(11):2201-2222. PubMed ID: 27735935 [TBL] [Abstract][Full Text] [Related]
7. Multilayer CVD graphene electrodes using a transfer-free process for the next generation of optically transparent and MRI-compatible neural interfaces. Bakhshaee Babaroud N; Palmar M; Velea AI; Coletti C; Weingärtner S; Vos F; Serdijn WA; Vollebregt S; Giagka V Microsyst Nanoeng; 2022; 8():107. PubMed ID: 36176270 [TBL] [Abstract][Full Text] [Related]
8. Proximal and distal modulation of neural activity by spatially confined optogenetic activation with an integrated high-density optoelectrode. Libbrecht S; Hoffman L; Welkenhuysen M; Van den Haute C; Baekelandt V; Braeken D; Haesler S J Neurophysiol; 2018 Jul; 120(1):149-161. PubMed ID: 29589813 [TBL] [Abstract][Full Text] [Related]
9. Evaluation of Durability of Transparent Graphene Electrodes Fabricated on Different Flexible Substrates for Chronic In Vivo Experiments. Ding D; Lu Y; Zhao R; Liu X; De-Eknamkul C; Ren C; Mehrsa A; Komiyama T; Kuzum D IEEE Trans Biomed Eng; 2020 Nov; 67(11):3203-3210. PubMed ID: 32191878 [TBL] [Abstract][Full Text] [Related]
10. Electrical Neural Stimulation and Simultaneous in Vivo Monitoring with Transparent Graphene Electrode Arrays Implanted in GCaMP6f Mice. Park DW; Ness JP; Brodnick SK; Esquibel C; Novello J; Atry F; Baek DH; Kim H; Bong J; Swanson KI; Suminski AJ; Otto KJ; Pashaie R; Williams JC; Ma Z ACS Nano; 2018 Jan; 12(1):148-157. PubMed ID: 29253337 [TBL] [Abstract][Full Text] [Related]
11. Stretchable Transparent Electrode Arrays for Simultaneous Electrical and Optical Interrogation of Neural Circuits in Vivo. Zhang J; Liu X; Xu W; Luo W; Li M; Chu F; Xu L; Cao A; Guan J; Tang S; Duan X Nano Lett; 2018 May; 18(5):2903-2911. PubMed ID: 29608857 [TBL] [Abstract][Full Text] [Related]
12. Artifact-free and high-temporal-resolution in vivo opto-electrophysiology with microLED optoelectrodes. Kim K; Vöröslakos M; Seymour JP; Wise KD; Buzsáki G; Yoon E Nat Commun; 2020 Apr; 11(1):2063. PubMed ID: 32345971 [TBL] [Abstract][Full Text] [Related]
13. A Multichannel Recording System with Optical Stimulation for Closed-Loop Optogenetic Experiments. Bartic C; Battaglia FP; Wang L; Nguyen TT; Cabral H; Navratilova Z Methods Mol Biol; 2016; 1408():333-44. PubMed ID: 26965134 [TBL] [Abstract][Full Text] [Related]
14. Flexible Neural Probes with Electrochemical Modified Microelectrodes for Artifact-Free Optogenetic Applications. Guo B; Fan Y; Wang M; Cheng Y; Ji B; Chen Y; Wang G Int J Mol Sci; 2021 Oct; 22(21):. PubMed ID: 34768957 [TBL] [Abstract][Full Text] [Related]
15. Optogenetic entrainment of neural oscillations with hybrid fiber probes. Kilias A; Canales A; Froriep UP; Park S; Egert U; Anikeeva P J Neural Eng; 2018 Oct; 15(5):056006. PubMed ID: 29923505 [TBL] [Abstract][Full Text] [Related]
16. An optically transparent multi-electrode array for combined electrophysiology and optophysiology at the mesoscopic scale. Brosch M; Deckert M; Rathi S; Takagaki K; Weidner T; Ohl FW; Schmidt B; Lippert MT J Neural Eng; 2020 Jul; 17(4):046014. PubMed ID: 32705997 [TBL] [Abstract][Full Text] [Related]
17. Graphene-based carbon-layered electrode array technology for neural imaging and optogenetic applications. Park DW; Schendel AA; Mikael S; Brodnick SK; Richner TJ; Ness JP; Hayat MR; Atry F; Frye ST; Pashaie R; Thongpang S; Ma Z; Williams JC Nat Commun; 2014 Oct; 5():5258. PubMed ID: 25327513 [TBL] [Abstract][Full Text] [Related]
18. Closed-loop, open-source electrophysiology. Rolston JD; Gross RE; Potter SM Front Neurosci; 2010; 4():. PubMed ID: 20859448 [TBL] [Abstract][Full Text] [Related]
19. Closed-loop optogenetic control of the dynamics of neural activity in non-human primates. Zaaimi B; Turnbull M; Hazra A; Wang Y; Gandara C; McLeod F; McDermott EE; Escobedo-Cousin E; Idil AS; Bailey RG; Tardio S; Patel A; Ponon N; Gausden J; Walsh D; Hutchings F; Kaiser M; Cunningham MO; Clowry GJ; LeBeau FEN; Constandinou TG; Baker SN; Donaldson N; Degenaar P; O'Neill A; Trevelyan AJ; Jackson A Nat Biomed Eng; 2023 Apr; 7(4):559-575. PubMed ID: 36266536 [TBL] [Abstract][Full Text] [Related]
20. Compact Optical Nerve Cuff Electrode for Simultaneous Neural Activity Monitoring and Optogenetic Stimulation of Peripheral Nerves. Song KI; Park SE; Lee S; Kim H; Lee SH; Youn I Sci Rep; 2018 Oct; 8(1):15630. PubMed ID: 30353118 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]