These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

177 related articles for article (PubMed ID: 29560026)

  • 1. The natural catalytic function of
    Mosbech C; Holck J; Meyer AS; Agger JW
    Biotechnol Biofuels; 2018; 11():71. PubMed ID: 29560026
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Enzyme kinetics of fungal glucuronoyl esterases on natural lignin-carbohydrate complexes.
    Mosbech C; Holck J; Meyer A; Agger JW
    Appl Microbiol Biotechnol; 2019 May; 103(10):4065-4075. PubMed ID: 30949809
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Transesterification with CE15 glucuronoyl esterase from Cerrena unicolor reveals substrate preferences.
    Perna V; Agger JW
    Biotechnol Lett; 2024 Feb; 46(1):107-114. PubMed ID: 38150097
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Enzymatic degradation of lignin-carbohydrate complexes (LCCs): model studies using a fungal glucuronoyl esterase from Cerrena unicolor.
    d'Errico C; Jørgensen JO; Krogh KB; Spodsberg N; Madsen R; Monrad RN
    Biotechnol Bioeng; 2015 May; 112(5):914-22. PubMed ID: 25425346
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The structural basis of fungal glucuronoyl esterase activity on natural substrates.
    Ernst HA; Mosbech C; Langkilde AE; Westh P; Meyer AS; Agger JW; Larsen S
    Nat Commun; 2020 Feb; 11(1):1026. PubMed ID: 32094331
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A New Functional Classification of Glucuronoyl Esterases by Peptide Pattern Recognition.
    Agger JW; Busk PK; Pilgaard B; Meyer AS; Lange L
    Front Microbiol; 2017; 8():309. PubMed ID: 28293230
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structural and biochemical studies of the glucuronoyl esterase
    Mazurkewich S; Poulsen JN; Lo Leggio L; Larsbrink J
    J Biol Chem; 2019 Dec; 294(52):19978-19987. PubMed ID: 31740581
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Polysaccharide utilization loci from Bacteroidota encode CE15 enzymes with possible roles in cleaving pectin-lignin bonds.
    Seveso A; Mazurkewich S; Banerjee S; Poulsen J-CN; Lo Leggio L; Larsbrink J
    Appl Environ Microbiol; 2024 Jan; 90(1):e0176823. PubMed ID: 38179933
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A glucuronoyl esterase from Acremonium alcalophilum cleaves native lignin-carbohydrate ester bonds.
    Arnling Bååth J; Giummarella N; Klaubauf S; Lawoko M; Olsson L
    FEBS Lett; 2016 Aug; 590(16):2611-8. PubMed ID: 27397104
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Biochemical and structural features of diverse bacterial glucuronoyl esterases facilitating recalcitrant biomass conversion.
    Arnling Bååth J; Mazurkewich S; Knudsen RM; Poulsen JN; Olsson L; Lo Leggio L; Larsbrink J
    Biotechnol Biofuels; 2018; 11():213. PubMed ID: 30083226
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Efficient activity screening of new glucuronoyl esterases using a pNP-based assay.
    Madsen MS; Martins PA; Agger JW
    Enzyme Microb Technol; 2024 Aug; 178():110444. PubMed ID: 38581869
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Synthesis of a natural core substrate with lignin-xylan cross-linkage for unveiling the productive kinetic parameters of glucuronoyl esterase.
    Koh S; Saito Y; Kudo H; Taguchi S; Kumagai A; Mizuno M; Samejima M; Amano Y
    Biochem Biophys Res Commun; 2024 Nov; 734():150642. PubMed ID: 39316949
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structure-function analyses reveal that a glucuronoyl esterase from
    Arnling Bååth J; Mazurkewich S; Poulsen JN; Olsson L; Lo Leggio L; Larsbrink J
    J Biol Chem; 2019 Apr; 294(16):6635-6644. PubMed ID: 30814248
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Improved biomass degradation using fungal glucuronoyl-esterases-hydrolysis of natural corn fiber substrate.
    d'Errico C; Börjesson J; Ding H; Krogh KB; Spodsberg N; Madsen R; Monrad RN
    J Biotechnol; 2016 Feb; 219():117-23. PubMed ID: 26712478
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The coordinated action of glucuronoyl esterase and α-glucuronidase promotes the disassembly of lignin-carbohydrate complexes.
    Raji O; Arnling Bååth J; Vuong TV; Larsbrink J; Olsson L; Master ER
    FEBS Lett; 2021 Feb; 595(3):351-359. PubMed ID: 33277689
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Microbial xylanolytic carbohydrate esterases.
    Puchart V; Biely P
    Essays Biochem; 2023 Apr; 67(3):479-491. PubMed ID: 36468678
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Expression of a fungal glucuronoyl esterase in Populus: effects on wood properties and saccharification efficiency.
    Latha Gandla M; Derba-Maceluch M; Liu X; Gerber L; Master ER; Mellerowicz EJ; Jönsson LJ
    Phytochemistry; 2015 Apr; 112():210-20. PubMed ID: 24997793
    [TBL] [Abstract][Full Text] [Related]  

  • 18. New insights to diversity and enzyme-substrate interactions of fungal glucuronoyl esterases.
    Agger JW; Madsen MS; Martinsen LK; Martins PA; Barrett K; Meyer AS
    Appl Microbiol Biotechnol; 2023 Jul; 107(14):4447-4457. PubMed ID: 37256329
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Synthetic esters recognized by glucuronoyl esterase from Schizophyllum commune.
    Spániková S; Poláková M; Joniak D; Hirsch J; Biely P
    Arch Microbiol; 2007 Aug; 188(2):185-9. PubMed ID: 17440709
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Expression and characterization of two glucuronoyl esterases from Thielavia terrestris and their application in enzymatic hydrolysis of corn bran.
    Tang J; Long L; Cao Y; Ding S
    Appl Microbiol Biotechnol; 2019 Apr; 103(7):3037-3048. PubMed ID: 30762074
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.