These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

173 related articles for article (PubMed ID: 29560190)

  • 21. Hydrogen-atom transfer in open-shell organometallic chemistry: the reactivity of Rh(II)(cod) and Ir(II)(cod) radicals.
    Hetterscheid DG; Klop M; Kicken RJ; Smits JM; Reijerse EJ; de Bruin B
    Chemistry; 2007; 13(12):3386-405. PubMed ID: 17219454
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Synthesis, structure, and reactivity of iridium perfluorocarbene complexes: regio- and stereo-specific addition of HCl across a metal carbon double bond.
    Yuan J; Bourgeois CJ; Rheingold AL; Hughes RP
    Dalton Trans; 2015 Dec; 44(45):19528-42. PubMed ID: 26211437
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Enhanced Hydrogen Generation from Formic Acid by Half-Sandwich Iridium(III) Complexes with Metal/NH Bifunctionality: A Pronounced Switch from Transfer Hydrogenation.
    Matsunami A; Kayaki Y; Ikariya T
    Chemistry; 2015 Sep; 21(39):13513-7. PubMed ID: 26277707
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Ammonia-Borane Dehydrogenation Catalyzed by Dual-Mode Proton-Responsive Ir-CNN
    Ortega-Lepe I; Rossin A; Sánchez P; Santos LL; Rendón N; Álvarez E; López-Serrano J; Suárez A
    Inorg Chem; 2021 Dec; 60(23):18490-18502. PubMed ID: 34784204
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Unravelling the Mechanism of Excited-State Interligand Energy Transfer and the Engineering of Dual Emission in [Ir(C
    Scattergood PA; Ranieri AM; Charalambou L; Comia A; Ross DAW; Rice CR; Hardman SJO; Heully JL; Dixon IM; Massi M; Alary F; Elliott PIP
    Inorg Chem; 2020 Feb; 59(3):1785-1803. PubMed ID: 31934759
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Assessment of the Electronic Factors Determining the Thermodynamics of "Oxidative Addition" of C-H and N-H Bonds to Ir(I) Complexes.
    Wang DY; Choliy Y; Haibach MC; Hartwig JF; Krogh-Jespersen K; Goldman AS
    J Am Chem Soc; 2016 Jan; 138(1):149-63. PubMed ID: 26652221
    [TBL] [Abstract][Full Text] [Related]  

  • 27. C-H activations at iridium(I) square-planar complexes promoted by a fifth ligand.
    Martín M; Torres O; Oñate E; Sola E; Oro LA
    J Am Chem Soc; 2005 Dec; 127(51):18074-84. PubMed ID: 16366559
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Coordination effects on electron distributions for rhodium complexes of the redox-active bis(3,5-di-tert-butyl-2-phenolate)amide ligand.
    Szigethy G; Shaffer DW; Heyduk AF
    Inorg Chem; 2012 Dec; 51(23):12606-18. PubMed ID: 22482509
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Combined experimental and computational studies on carbon-carbon reductive elimination from Bis(hydrocarbyl) complexes of (PCP)Ir.
    Ghosh R; Emge TJ; Krogh-Jespersen K; Goldman AS
    J Am Chem Soc; 2008 Aug; 130(34):11317-27. PubMed ID: 18680287
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Base-free non-noble-metal-catalyzed hydrogen generation from formic acid: scope and mechanistic insights.
    Mellmann D; Barsch E; Bauer M; Grabow K; Boddien A; Kammer A; Sponholz P; Bentrup U; Jackstell R; Junge H; Laurenczy G; Ludwig R; Beller M
    Chemistry; 2014 Oct; 20(42):13589-602. PubMed ID: 25196789
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Acid-induced degradation of phosphorescent dopants for OLEDs and its application to the synthesis of tris-heteroleptic iridium(III) bis-cyclometalated complexes.
    Baranoff E; Curchod BF; Frey J; Scopelliti R; Kessler F; Tavernelli I; Rothlisberger U; Grätzel M; Nazeeruddin MK
    Inorg Chem; 2012 Jan; 51(1):215-24. PubMed ID: 22148629
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Multimodal study of secondary interactions in Cp*Ir complexes of imidazolylphosphines bearing an NH group.
    Grotjahn DB; Kraus JE; Amouri H; Rager MN; Cooksy AL; Arita AJ; Cortes-Llamas SA; Mallari AA; DiPasquale AG; Moore CE; Liable-Sands LM; Golen JD; Zakharov LN; Rheingold AL
    J Am Chem Soc; 2010 Jun; 132(23):7919-34. PubMed ID: 20486707
    [TBL] [Abstract][Full Text] [Related]  

  • 33. DFT Probe into the Mechanism of Formic Acid Dehydrogenation Catalyzed by Cp*Co, Cp*Rh, and Cp*Ir Catalysts with 4,4'-Amino-/Alkylamino-Functionalized 2,2'-Bipyridine Ligands.
    Johnee Britto N; Jaccob M
    J Phys Chem A; 2021 Nov; 125(43):9478-9488. PubMed ID: 34702035
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A ligand design strategy to enhance catalyst stability for efficient formic acid dehydrogenation.
    Guo J; Li M; Yin C; Li X; Wang Y; Yuan J; Qi T
    Dalton Trans; 2023 Apr; 52(15):4856-4861. PubMed ID: 36939828
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Experimental and computational study of alkane dehydrogenation catalyzed by a carbazolide-based rhodium PNP pincer complex.
    Bézier D; Guan C; Krogh-Jespersen K; Goldman AS; Brookhart M
    Chem Sci; 2016 Apr; 7(4):2579-2586. PubMed ID: 28660029
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Impact of Green Cosolvents on the Catalytic Dehydrogenation of Formic Acid: The Case of Iridium Catalysts Bearing NHC-phosphane Ligands.
    Luque-Gómez A; García-Abellán S; Munarriz J; Polo V; Passarelli V; Iglesias M
    Inorg Chem; 2021 Oct; 60(20):15497-15508. PubMed ID: 34558914
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Charge and Spin States in Schiff Base Metal Complexes with a Disiloxane Unit Exhibiting a Strong Noninnocent Ligand Character: Synthesis, Structure, Spectroelectrochemistry, and Theoretical Calculations.
    Cazacu M; Shova S; Soroceanu A; Machata P; Bucinsky L; Breza M; Rapta P; Telser J; Krzystek J; Arion VB
    Inorg Chem; 2015 Jun; 54(12):5691-706. PubMed ID: 26030801
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Hydrogen Production from Formic Acid and Formaldehyde over Ruthenium Catalysts in Water.
    Patra S; Singh SK
    Inorg Chem; 2020 Apr; 59(7):4234-4243. PubMed ID: 32207936
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Structure and reactivity of new iridium complexes with bis(oxazoline)-phosphonito ligands.
    Peloso R; Pattacini R; Cazin CS; Braunstein P
    Inorg Chem; 2009 Dec; 48(23):11415-24. PubMed ID: 19883064
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Structural diversity in manganese, iron and cobalt complexes of the ditopic 1,2-bis(2,2'-bipyridyl-6-yl)ethyne ligand and observation of epoxidation and catalase activity of manganese compounds.
    Madhu V; Ekambaram B; Shimon LJ; Diskin Y; Leitus G; Neumann R
    Dalton Trans; 2010 Aug; 39(31):7266-75. PubMed ID: 20582360
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.