BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

256 related articles for article (PubMed ID: 29560191)

  • 1. Merging of the photocatalysis and copper catalysis in metal-organic frameworks for oxidative C-C bond formation.
    Shi D; He C; Qi B; Chen C; Niu J; Duan C
    Chem Sci; 2015 Feb; 6(2):1035-1042. PubMed ID: 29560191
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Merging Visible Light Photoredox Catalysis with Metal Catalyzed C-H Activations: On the Role of Oxygen and Superoxide Ions as Oxidants.
    Fabry DC; Rueping M
    Acc Chem Res; 2016 Sep; 49(9):1969-79. PubMed ID: 27556812
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Photocatalytic Activation of Less Reactive Bonds and Their Functionalization via Hydrogen-Evolution Cross-Couplings.
    Chen B; Wu LZ; Tung CH
    Acc Chem Res; 2018 Oct; 51(10):2512-2523. PubMed ID: 30280898
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Merging Visible Light Photoredox and Gold Catalysis.
    Hopkinson MN; Tlahuext-Aca A; Glorius F
    Acc Chem Res; 2016 Oct; 49(10):2261-2272. PubMed ID: 27610939
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Synthetic and Mechanistic Implications of Chlorine Photoelimination in Nickel/Photoredox C(sp
    Kariofillis SK; Doyle AG
    Acc Chem Res; 2021 Feb; 54(4):988-1000. PubMed ID: 33511841
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Merging Photoredox and Organometallic Catalysts in a Metal-Organic Framework Significantly Boosts Photocatalytic Activities.
    Zhu YY; Lan G; Fan Y; Veroneau SS; Song Y; Micheroni D; Lin W
    Angew Chem Int Ed Engl; 2018 Oct; 57(43):14090-14094. PubMed ID: 30129281
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Photocatalytic C(sp
    Liu M; Cai J; Huang L; Duan C
    Dalton Trans; 2023 Nov; 52(46):17109-17113. PubMed ID: 37987084
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Transition-metal-catalyzed C-N bond forming reactions using organic azides as the nitrogen source: a journey for the mild and versatile C-H amination.
    Shin K; Kim H; Chang S
    Acc Chem Res; 2015 Apr; 48(4):1040-52. PubMed ID: 25821998
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Exploration of Visible-Light Photocatalysis in Heterocycle Synthesis and Functionalization: Reaction Design and Beyond.
    Chen JR; Hu XQ; Lu LQ; Xiao WJ
    Acc Chem Res; 2016 Sep; 49(9):1911-23. PubMed ID: 27551740
    [TBL] [Abstract][Full Text] [Related]  

  • 10. When metal-catalyzed C-H functionalization meets visible-light photocatalysis.
    Guillemard L; Wencel-Delord J
    Beilstein J Org Chem; 2020; 16():1754-1804. PubMed ID: 32765795
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A Paradigm Shift in Catalysis: Electro- and Photomediated Nickel-Catalyzed Cross-Coupling Reactions.
    Palkowitz MD; Emmanuel MA; Oderinde MS
    Acc Chem Res; 2023 Oct; 56(20):2851-2865. PubMed ID: 37772915
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Visible-Light-Induced Nickel-Catalyzed Negishi Cross-Couplings by Exogenous-Photosensitizer-Free Photocatalysis.
    Abdiaj I; Fontana A; Gomez MV; de la Hoz A; Alcázar J
    Angew Chem Int Ed Engl; 2018 Jul; 57(28):8473-8477. PubMed ID: 29566297
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Copper-Catalyzed Oxidative Carbon-Carbon and/or Carbon-Heteroatom Bond Formation with O
    Tang X; Wu W; Zeng W; Jiang H
    Acc Chem Res; 2018 May; 51(5):1092-1105. PubMed ID: 29648789
    [TBL] [Abstract][Full Text] [Related]  

  • 14. When Light Meets Nitrogen-Centered Radicals: From Reagents to Catalysts.
    Yu XY; Zhao QQ; Chen J; Xiao WJ; Chen JR
    Acc Chem Res; 2020 May; 53(5):1066-1083. PubMed ID: 32286794
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Shining Light on Copper: Unique Opportunities for Visible-Light-Catalyzed Atom Transfer Radical Addition Reactions and Related Processes.
    Reiser O
    Acc Chem Res; 2016 Sep; 49(9):1990-6. PubMed ID: 27556932
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Multi-Component Metal-Organic Frameworks Significantly Boost Visible-Light-Driven Hydrogen Production Coupled with Selective Organic Oxidation.
    Li H; Yang Y; Jing X; He C; Duan C
    Chem Asian J; 2021 May; 16(10):1237-1244. PubMed ID: 33769702
    [TBL] [Abstract][Full Text] [Related]  

  • 17. One-Pot Tandem Photoredox and Cross-Coupling Catalysis with a Single Palladium Carbodicarbene Complex.
    Hsu YC; Wang VC; Au-Yeung KC; Tsai CY; Chang CC; Lin BC; Chan YT; Hsu CP; Yap GPA; Jurca T; Ong TG
    Angew Chem Int Ed Engl; 2018 Apr; 57(17):4622-4626. PubMed ID: 29461658
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Designing a Cu(II)-ArCu(II)-ArCu(III)-Cu(I) catalytic cycle: Cu(II)-catalyzed oxidative arene C-H bond azidation with air as an oxidant under ambient conditions.
    Yao B; Liu Y; Zhao L; Wang DX; Wang MX
    J Org Chem; 2014 Nov; 79(22):11139-45. PubMed ID: 25350606
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Native functionality in triple catalytic cross-coupling: sp³ C-H bonds as latent nucleophiles.
    Shaw MH; Shurtleff VW; Terrett JA; Cuthbertson JD; MacMillan DW
    Science; 2016 Jun; 352(6291):1304-8. PubMed ID: 27127237
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Copper-Catalyzed Radical Relay for Asymmetric Radical Transformations.
    Wang F; Chen P; Liu G
    Acc Chem Res; 2018 Sep; 51(9):2036-2046. PubMed ID: 30183262
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.