These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

206 related articles for article (PubMed ID: 29560223)

  • 1. Enzymatic modification of 5'-capped RNA with a 4-vinylbenzyl group provides a platform for photoclick and inverse electron-demand Diels-Alder reaction.
    Holstein JM; Stummer D; Rentmeister A
    Chem Sci; 2015 Feb; 6(2):1362-1369. PubMed ID: 29560223
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Quantum Chemical Calculations and Experimental Validation of the Photoclick Reaction for Fluorescent Labeling of the 5' cap of Eukaryotic mRNAs.
    Stummer D; Herrmann C; Rentmeister A
    ChemistryOpen; 2015 Jun; 4(3):295-301. PubMed ID: 26246991
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Enzymatic Modification of 5'-Capped RNA and Subsequent Labeling by Click Chemistry.
    Holstein JM; Stummer D; Rentmeister A
    Methods Mol Biol; 2016; 1428():45-60. PubMed ID: 27236791
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Chemo-Enzymatic Modification of the 5' Cap To Study mRNAs.
    Bollu A; Peters A; Rentmeister A
    Acc Chem Res; 2022 May; 55(9):1249-1261. PubMed ID: 35420432
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Triple Orthogonal Labeling of Glycans by Applying Photoclick Chemistry.
    Schart VF; Hassenrück J; Späte AK; Dold JEGA; Fahrner R; Wittmann V
    Chembiochem; 2019 Jan; 20(2):166-171. PubMed ID: 30499611
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Post-synthetic modification of DNA by inverse-electron-demand Diels-Alder reaction.
    Schoch J; Wiessler M; Jäschke A
    J Am Chem Soc; 2010 Jul; 132(26):8846-7. PubMed ID: 20550120
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Inverse Electron-Demand Diels-Alder Bioorthogonal Reactions.
    Wu H; Devaraj NK
    Top Curr Chem (Cham); 2016 Feb; 374(1):3. PubMed ID: 27572986
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A chemo-enzymatic approach for site-specific modification of the RNA cap.
    Schulz D; Holstein JM; Rentmeister A
    Angew Chem Int Ed Engl; 2013 Jul; 52(30):7874-8. PubMed ID: 23794451
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dual 5' Cap Labeling Based on Regioselective RNA Methyltransferases and Bioorthogonal Reactions.
    Holstein JM; Muttach F; Schiefelbein SHH; Rentmeister A
    Chemistry; 2017 May; 23(25):6165-6173. PubMed ID: 27869340
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Site-Specific Protein Labeling Utilizing Lipoic Acid Ligase (LplA) and Bioorthogonal Inverse Electron Demand Diels-Alder Reaction.
    Baalmann M; Best M; Wombacher R
    Methods Mol Biol; 2018; 1728():365-387. PubMed ID: 29405010
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Inverse electron-demand Diels-Alder reactions for the selective and efficient labeling of RNA.
    Schoch J; Ameta S; Jäschke A
    Chem Commun (Camb); 2011 Dec; 47(46):12536-7. PubMed ID: 22002170
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Two-step protein labeling by using lipoic acid ligase with norbornene substrates and subsequent inverse-electron demand Diels-Alder reaction.
    Best M; Degen A; Baalmann M; Schmidt TT; Wombacher R
    Chembiochem; 2015 May; 16(8):1158-62. PubMed ID: 25900689
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Diels-Alder cycloadditions on synthetic RNA in mammalian cells.
    Pyka AM; Domnick C; Braun F; Kath-Schorr S
    Bioconjug Chem; 2014 Aug; 25(8):1438-43. PubMed ID: 25068829
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Copper-Free Postsynthetic Labeling of Nucleic Acids by Means of Bioorthogonal Reactions.
    Merkel M; Peewasan K; Arndt S; Ploschik D; Wagenknecht HA
    Chembiochem; 2015 Jul; 16(11):1541-53. PubMed ID: 26063100
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Preparation of bispecific antibody-protein adducts by site-specific chemo-enzymatic conjugation.
    Bartels L; Ploegh HL; Spits H; Wagner K
    Methods; 2019 Feb; 154():93-101. PubMed ID: 30081077
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Vinylboronic Acids as Fast Reacting, Synthetically Accessible, and Stable Bioorthogonal Reactants in the Carboni-Lindsey Reaction.
    Eising S; Lelivelt F; Bonger KM
    Angew Chem Int Ed Engl; 2016 Sep; 55(40):12243-7. PubMed ID: 27605057
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Bioorthogonal chemistry for site-specific labeling and surface immobilization of proteins.
    Chen YX; Triola G; Waldmann H
    Acc Chem Res; 2011 Sep; 44(9):762-73. PubMed ID: 21648407
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Scope and Limitations of Typical Copper-Free Bioorthogonal Reactions with DNA: Reactive 2'-Deoxyuridine Triphosphates for Postsynthetic Labeling.
    Merkel M; Arndt S; Ploschik D; Cserép GB; Wenge U; Kele P; Wagenknecht HA
    J Org Chem; 2016 Sep; 81(17):7527-38. PubMed ID: 27513089
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Recent Advances in Bioorthogonal Click Chemistry for Efficient Synthesis of Radiotracers and Radiopharmaceuticals.
    Mushtaq S; Yun SJ; Jeon J
    Molecules; 2019 Oct; 24(19):. PubMed ID: 31581645
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Chemo-enzymatic modification of eukaryotic mRNA.
    Muttach F; Muthmann N; Rentmeister A
    Org Biomol Chem; 2017 Jan; 15(2):278-284. PubMed ID: 27878160
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.