BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

339 related articles for article (PubMed ID: 29560480)

  • 1. A photonic sintering derived Ag flake/nanoparticle-based highly sensitive stretchable strain sensor for human motion monitoring.
    Kim I; Woo K; Zhong Z; Ko P; Jang Y; Jung M; Jo J; Kwon S; Lee SH; Lee S; Youn H; Moon J
    Nanoscale; 2018 May; 10(17):7890-7897. PubMed ID: 29560480
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Highly stretchable and sensitive strain sensor based on silver nanowire-elastomer nanocomposite.
    Amjadi M; Pichitpajongkit A; Lee S; Ryu S; Park I
    ACS Nano; 2014 May; 8(5):5154-63. PubMed ID: 24749972
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Stretchable and Washable Strain Sensor Based on Cracking Structure for Human Motion Monitoring.
    Tolvanen J; Hannu J; Jantunen H
    Sci Rep; 2018 Sep; 8(1):13241. PubMed ID: 30185926
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Silver-Coated Poly(dimethylsiloxane) Beads for Soft, Stretchable, and Thermally Stable Conductive Elastomer Composites.
    Pan C; Ohm Y; Wang J; Ford MJ; Kumar K; Kumar S; Majidi C
    ACS Appl Mater Interfaces; 2019 Nov; 11(45):42561-42570. PubMed ID: 31638761
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A stretchable strain sensor based on a metal nanoparticle thin film for human motion detection.
    Lee J; Kim S; Lee J; Yang D; Park BC; Ryu S; Park I
    Nanoscale; 2014 Oct; 6(20):11932-9. PubMed ID: 25175360
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Highly Conductive PVA/Ag Coating by Aqueous in Situ Reduction and Its Stretchable Structure for Strain Sensor.
    Li J; Wang L; Wang X; Yang Y; Hu Z; Liu L; Huang Y
    ACS Appl Mater Interfaces; 2020 Jan; 12(1):1427-1435. PubMed ID: 31847519
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Highly Sensitive and Durable Sea-Urchin-Shaped Silver Nanoparticles Strain Sensors for Human-Activity Monitoring.
    Zou Q; He K; Ou-Yang J; Zhang Y; Shen Y; Jin C
    ACS Appl Mater Interfaces; 2021 Mar; 13(12):14479-14488. PubMed ID: 33739083
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Highly Stretchable, Directionally Oriented Carbon Nanotube/PDMS Conductive Films with Enhanced Sensitivity as Wearable Strain Sensors.
    Tas MO; Baker MA; Masteghin MG; Bentz J; Boxshall K; Stolojan V
    ACS Appl Mater Interfaces; 2019 Oct; 11(43):39560-39573. PubMed ID: 31552734
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Highly sensitive wearable strain sensor based on silver nanowires and nanoparticles.
    Shengbo S; Lihua L; Aoqun J; Qianqian D; Jianlong J; Qiang Z; Wendong Z
    Nanotechnology; 2018 Jun; 29(25):255202. PubMed ID: 29620014
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Crack-induced Ag nanowire networks for transparent, stretchable, and highly sensitive strain sensors.
    Lee CJ; Park KH; Han CJ; Oh MS; You B; Kim YS; Kim JW
    Sci Rep; 2017 Aug; 7(1):7959. PubMed ID: 28801657
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Heterogeneous Strain Distribution of Elastomer Substrates To Enhance the Sensitivity of Stretchable Strain Sensors.
    Jiang Y; Liu Z; Wang C; Chen X
    Acc Chem Res; 2019 Jan; 52(1):82-90. PubMed ID: 30586278
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Spider-Web-Inspired Stretchable Graphene Woven Fabric for Highly Sensitive, Transparent, Wearable Strain Sensors.
    Liu X; Liu D; Lee JH; Zheng Q; Du X; Zhang X; Xu H; Wang Z; Wu Y; Shen X; Cui J; Mai YW; Kim JK
    ACS Appl Mater Interfaces; 2019 Jan; 11(2):2282-2294. PubMed ID: 30582684
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Synthesis of silver nanoparticles embedded with single-walled carbon nanotubes for printable elastic electrodes and sensors with high stability.
    Lee JW; Cho JY; Kim MJ; Kim JH; Park JH; Jeong SY; Seo SH; Lee GW; Jeong HJ; Han JT
    Sci Rep; 2021 Mar; 11(1):5140. PubMed ID: 33664300
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Investigation of stretchable strain sensor based on CNT/AgNW applied in smart wearable devices.
    Liu MY; Hang CZ; Wu XY; Zhu LY; Wen XH; Wang Y; Zhao XF; Lu HL
    Nanotechnology; 2022 Apr; 33(25):. PubMed ID: 35299168
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Highly Stretchable Multifunctional Wearable Devices Based on Conductive Cotton and Wool Fabrics.
    Souri H; Bhattacharyya D
    ACS Appl Mater Interfaces; 2018 Jun; 10(24):20845-20853. PubMed ID: 29808668
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Highly Sensitive and Stretchable Strain Sensor Based on a Synergistic Hybrid Conductive Network.
    Liu X; Liang X; Lin Z; Lei Z; Xiong Y; Hu Y; Zhu P; Sun R; Wong CP
    ACS Appl Mater Interfaces; 2020 Sep; 12(37):42420-42429. PubMed ID: 32833419
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Three-Dimensional Binary-Conductive-Network Silver Nanowires@Thiolated Graphene Foam-Based Room-Temperature Self-Healable Strain Sensor for Human Motion Detection.
    Zhang L; Li H; Lai X; Gao T; Zeng X
    ACS Appl Mater Interfaces; 2020 Sep; 12(39):44360-44370. PubMed ID: 32901483
    [TBL] [Abstract][Full Text] [Related]  

  • 18. One-Step Fabrication of Stretchable Copper Nanowire Conductors by a Fast Photonic Sintering Technique and Its Application in Wearable Devices.
    Ding S; Jiu J; Gao Y; Tian Y; Araki T; Sugahara T; Nagao S; Nogi M; Koga H; Suganuma K; Uchida H
    ACS Appl Mater Interfaces; 2016 Mar; 8(9):6190-9. PubMed ID: 26830466
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Highly Sensitive Multifilament Fiber Strain Sensors with Ultrabroad Sensing Range for Textile Electronics.
    Lee J; Shin S; Lee S; Song J; Kang S; Han H; Kim S; Kim S; Seo J; Kim D; Lee T
    ACS Nano; 2018 May; 12(5):4259-4268. PubMed ID: 29617111
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Highly Stretchable Core-Sheath Fibers via Wet-Spinning for Wearable Strain Sensors.
    Tang Z; Jia S; Wang F; Bian C; Chen Y; Wang Y; Li B
    ACS Appl Mater Interfaces; 2018 Feb; 10(7):6624-6635. PubMed ID: 29384359
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.