These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

389 related articles for article (PubMed ID: 29560480)

  • 1. A photonic sintering derived Ag flake/nanoparticle-based highly sensitive stretchable strain sensor for human motion monitoring.
    Kim I; Woo K; Zhong Z; Ko P; Jang Y; Jung M; Jo J; Kwon S; Lee SH; Lee S; Youn H; Moon J
    Nanoscale; 2018 May; 10(17):7890-7897. PubMed ID: 29560480
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Highly stretchable and sensitive strain sensor based on silver nanowire-elastomer nanocomposite.
    Amjadi M; Pichitpajongkit A; Lee S; Ryu S; Park I
    ACS Nano; 2014 May; 8(5):5154-63. PubMed ID: 24749972
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Stretchable and Washable Strain Sensor Based on Cracking Structure for Human Motion Monitoring.
    Tolvanen J; Hannu J; Jantunen H
    Sci Rep; 2018 Sep; 8(1):13241. PubMed ID: 30185926
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Silver-Coated Poly(dimethylsiloxane) Beads for Soft, Stretchable, and Thermally Stable Conductive Elastomer Composites.
    Pan C; Ohm Y; Wang J; Ford MJ; Kumar K; Kumar S; Majidi C
    ACS Appl Mater Interfaces; 2019 Nov; 11(45):42561-42570. PubMed ID: 31638761
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A stretchable strain sensor based on a metal nanoparticle thin film for human motion detection.
    Lee J; Kim S; Lee J; Yang D; Park BC; Ryu S; Park I
    Nanoscale; 2014 Oct; 6(20):11932-9. PubMed ID: 25175360
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Highly Conductive PVA/Ag Coating by Aqueous in Situ Reduction and Its Stretchable Structure for Strain Sensor.
    Li J; Wang L; Wang X; Yang Y; Hu Z; Liu L; Huang Y
    ACS Appl Mater Interfaces; 2020 Jan; 12(1):1427-1435. PubMed ID: 31847519
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Highly Sensitive and Durable Sea-Urchin-Shaped Silver Nanoparticles Strain Sensors for Human-Activity Monitoring.
    Zou Q; He K; Ou-Yang J; Zhang Y; Shen Y; Jin C
    ACS Appl Mater Interfaces; 2021 Mar; 13(12):14479-14488. PubMed ID: 33739083
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Highly Stretchable, Directionally Oriented Carbon Nanotube/PDMS Conductive Films with Enhanced Sensitivity as Wearable Strain Sensors.
    Tas MO; Baker MA; Masteghin MG; Bentz J; Boxshall K; Stolojan V
    ACS Appl Mater Interfaces; 2019 Oct; 11(43):39560-39573. PubMed ID: 31552734
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Highly sensitive wearable strain sensor based on silver nanowires and nanoparticles.
    Shengbo S; Lihua L; Aoqun J; Qianqian D; Jianlong J; Qiang Z; Wendong Z
    Nanotechnology; 2018 Jun; 29(25):255202. PubMed ID: 29620014
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Crack-induced Ag nanowire networks for transparent, stretchable, and highly sensitive strain sensors.
    Lee CJ; Park KH; Han CJ; Oh MS; You B; Kim YS; Kim JW
    Sci Rep; 2017 Aug; 7(1):7959. PubMed ID: 28801657
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Heterogeneous Strain Distribution of Elastomer Substrates To Enhance the Sensitivity of Stretchable Strain Sensors.
    Jiang Y; Liu Z; Wang C; Chen X
    Acc Chem Res; 2019 Jan; 52(1):82-90. PubMed ID: 30586278
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Spider-Web-Inspired Stretchable Graphene Woven Fabric for Highly Sensitive, Transparent, Wearable Strain Sensors.
    Liu X; Liu D; Lee JH; Zheng Q; Du X; Zhang X; Xu H; Wang Z; Wu Y; Shen X; Cui J; Mai YW; Kim JK
    ACS Appl Mater Interfaces; 2019 Jan; 11(2):2282-2294. PubMed ID: 30582684
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Synthesis of silver nanoparticles embedded with single-walled carbon nanotubes for printable elastic electrodes and sensors with high stability.
    Lee JW; Cho JY; Kim MJ; Kim JH; Park JH; Jeong SY; Seo SH; Lee GW; Jeong HJ; Han JT
    Sci Rep; 2021 Mar; 11(1):5140. PubMed ID: 33664300
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Investigation of stretchable strain sensor based on CNT/AgNW applied in smart wearable devices.
    Liu MY; Hang CZ; Wu XY; Zhu LY; Wen XH; Wang Y; Zhao XF; Lu HL
    Nanotechnology; 2022 Apr; 33(25):. PubMed ID: 35299168
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Highly Stretchable Multifunctional Wearable Devices Based on Conductive Cotton and Wool Fabrics.
    Souri H; Bhattacharyya D
    ACS Appl Mater Interfaces; 2018 Jun; 10(24):20845-20853. PubMed ID: 29808668
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Highly Sensitive and Stretchable Strain Sensor Based on a Synergistic Hybrid Conductive Network.
    Liu X; Liang X; Lin Z; Lei Z; Xiong Y; Hu Y; Zhu P; Sun R; Wong CP
    ACS Appl Mater Interfaces; 2020 Sep; 12(37):42420-42429. PubMed ID: 32833419
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Three-Dimensional Binary-Conductive-Network Silver Nanowires@Thiolated Graphene Foam-Based Room-Temperature Self-Healable Strain Sensor for Human Motion Detection.
    Zhang L; Li H; Lai X; Gao T; Zeng X
    ACS Appl Mater Interfaces; 2020 Sep; 12(39):44360-44370. PubMed ID: 32901483
    [TBL] [Abstract][Full Text] [Related]  

  • 18. One-Step Fabrication of Stretchable Copper Nanowire Conductors by a Fast Photonic Sintering Technique and Its Application in Wearable Devices.
    Ding S; Jiu J; Gao Y; Tian Y; Araki T; Sugahara T; Nagao S; Nogi M; Koga H; Suganuma K; Uchida H
    ACS Appl Mater Interfaces; 2016 Mar; 8(9):6190-9. PubMed ID: 26830466
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Highly Sensitive Multifilament Fiber Strain Sensors with Ultrabroad Sensing Range for Textile Electronics.
    Lee J; Shin S; Lee S; Song J; Kang S; Han H; Kim S; Kim S; Seo J; Kim D; Lee T
    ACS Nano; 2018 May; 12(5):4259-4268. PubMed ID: 29617111
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Highly Stretchable Core-Sheath Fibers via Wet-Spinning for Wearable Strain Sensors.
    Tang Z; Jia S; Wang F; Bian C; Chen Y; Wang Y; Li B
    ACS Appl Mater Interfaces; 2018 Feb; 10(7):6624-6635. PubMed ID: 29384359
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 20.