These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

205 related articles for article (PubMed ID: 29560624)

  • 41. Head to head comparison of optical coherence tomography, intravascular ultrasound echogenicity and virtual histology for the detection of changes in polymeric struts over time: insights from the ABSORB trial.
    Brugaletta S; Gomez-Lara J; Bruining N; Radu MD; van Geuns RJ; Thuesen L; McClean D; Koolen J; Windecker S; Whitbourn R; Oberhauser J; Rapoza R; Ormiston JA; Garcia-Garcia HM; Serruys PW
    EuroIntervention; 2012 Jul; 8(3):352-8. PubMed ID: 22130182
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Disruption of bioresorbable vascular scaffold struts due to loss of radial integrity: insights from optical coherence tomography.
    Ramalho AR; Silva Marques J; Mariano Pêgo G
    Int J Cardiovasc Imaging; 2017 Mar; 33(3):311-312. PubMed ID: 27832420
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Automatic detection of bioresorbable vascular scaffold struts in intravascular optical coherence tomography pullback runs.
    Wang A; Nakatani S; Eggermont J; Onuma Y; Garcia-Garcia HM; Serruys PW; Reiber JH; Dijkstra J
    Biomed Opt Express; 2014 Oct; 5(10):3589-602. PubMed ID: 25360375
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Comparison of long-term in-stent vascular response between abluminal groove-filled biodegradable polymer sirolimus-eluting stent and durable polymer everolimus-eluting stent: 3-year OCT follow-up from the TARGET I trial.
    Xu B; Zhang YJ; Sun ZW; Qiao SB; Chen SL; Zhang RY; Pan DR; Pang S; Zhang Q; Xu L; Yang YJ; Leon MB; Gao RL
    Int J Cardiovasc Imaging; 2015 Dec; 31(8):1489-96. PubMed ID: 26208685
    [TBL] [Abstract][Full Text] [Related]  

  • 45. A new 3-D automated computational method to evaluate in-stent neointimal hyperplasia in in-vivo intravascular optical coherence tomography pullbacks.
    Gurmeric S; Isguder GG; Carlier S; Unal G
    Med Image Comput Comput Assist Interv; 2009; 12(Pt 2):776-85. PubMed ID: 20426182
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Long-Term Arterial Remodeling After Bioresorbable Scaffold Implantation 4-Year Follow-up of Quantitative Coronary Angiography, Histology and Optical Coherence Tomography.
    Chen D; Dong Z; Xi Y; Chen C; Zhang S; Zeng S; Bi Y; Wu T; Xiao J
    Cardiovasc Eng Technol; 2020 Dec; 11(6):636-645. PubMed ID: 33108646
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Randomized Comparison of Absorb Bioresorbable Vascular Scaffold and Mirage Microfiber Sirolimus-Eluting Scaffold Using Multimodality Imaging.
    Tenekecioglu E; Serruys PW; Onuma Y; Costa R; Chamié D; Sotomi Y; Yu TB; Abizaid A; Liew HB; Santoso T
    JACC Cardiovasc Interv; 2017 Jun; 10(11):1115-1130. PubMed ID: 28527768
    [TBL] [Abstract][Full Text] [Related]  

  • 48. In vivo characterisation of bioresorbable vascular scaffold strut interfaces using optical coherence tomography with Gaussian line spread function analysis.
    Sheehy A; Gutiérrez-Chico JL; Diletti R; Oberhauser JP; Glauser T; Harrington J; Kossuth MB; Rapoza RJ; Onuma Y; Serruys PW
    EuroIntervention; 2012 Feb; 7(10):1227-35. PubMed ID: 22222916
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Optical coherence tomography analysis of strut coverage in biolimus- and sirolimus-eluting stents: 3-month and 12-month serial follow-up.
    Kim BK; Hong MK; Shin DH; Kim JS; Ko YG; Choi D; Jang Y
    Int J Cardiol; 2013 Oct; 168(5):4617-23. PubMed ID: 23932862
    [TBL] [Abstract][Full Text] [Related]  

  • 50. ABSORB biodegradable stents versus second-generation metal stents: a comparison study of 100 complex lesions treated under OCT guidance.
    Mattesini A; Secco GG; Dall'Ara G; Ghione M; Rama-Merchan JC; Lupi A; Viceconte N; Lindsay AC; De Silva R; Foin N; Naganuma T; Valente S; Colombo A; Di Mario C
    JACC Cardiovasc Interv; 2014 Jul; 7(7):741-50. PubMed ID: 25060016
    [TBL] [Abstract][Full Text] [Related]  

  • 51. In-Vivo Vascular Healing Following Bifurcation Interventions with the Absorb Bioresorbable Vascular Scaffold.
    Bennett J; Verbeken E; Vanhaverbeke M; McCutcheon K; Adriaenssens T; Vanden Driessche N; Sinnaeve P; Desmet W; Dubois C
    Cardiovasc Revasc Med; 2020 Jan; 21(1):70-77. PubMed ID: 31000433
    [TBL] [Abstract][Full Text] [Related]  

  • 52. A framework for computational fluid dynamic analyses of patient-specific stented coronary arteries from optical coherence tomography images.
    Migliori S; Chiastra C; Bologna M; Montin E; Dubini G; Aurigemma C; Fedele R; Burzotta F; Mainardi L; Migliavacca F
    Med Eng Phys; 2017 Sep; 47():105-116. PubMed ID: 28711588
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Comparative assessment of three drug eluting stents with different platforms but with the same biodegradable polymer and the drug based on quantitative coronary angiography and optical coherence tomography at 12-month follow-up.
    Gil RJ; Bil J; Legutko J; Pawłowski T; Gil KE; Dudek D; Costa RA
    Int J Cardiovasc Imaging; 2018 Mar; 34(3):353-365. PubMed ID: 28965166
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Optical coherence tomography-based evaluation of malapposed strut coverage after drug-eluting stent implantation.
    Kim BK; Shin DH; Kim JS; Ko YG; Choi D; Jang Y; Hong MK
    Int J Cardiovasc Imaging; 2012 Dec; 28(8):1887-94. PubMed ID: 22447206
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Optical coherence tomography-guided versus angiography-guided implantation of everolimus-eluting bioresorbable vascular scaffolds: Comparison of coverage, apposition and clinical outcome. The ALSTER-OCT ABSORB registry.
    Heeger CH; Schedifka AS; Meincke F; Spangenberg T; Wienemann H; Kreidel F; Kuck KH; Ghanem A; Bergmann MW
    Cardiol J; 2018; 25(4):459-469. PubMed ID: 29512092
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Classification of mechanisms of strut malapposition after angiographically optimized stent implantation: An optical coherence tomography study.
    Agrawal M; Hakeem A; Ahmed Z; Uretsky BF
    Catheter Cardiovasc Interv; 2017 Aug; 90(2):225-232. PubMed ID: 28805036
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Bioresorption and Vessel Wall Integration of a Fully Bioresorbable Polymeric Everolimus-Eluting Scaffold: Optical Coherence Tomography, Intravascular Ultrasound, and Histological Study in a Porcine Model With 4-Year Follow-Up.
    Nakatani S; Ishibashi Y; Sotomi Y; Perkins L; Eggermont J; Grundeken MJ; Dijkstra J; Rapoza R; Virmani R; Serruys PW; Onuma Y
    JACC Cardiovasc Interv; 2016 Apr; 9(8):838-851. PubMed ID: 27101910
    [TBL] [Abstract][Full Text] [Related]  

  • 58. An automatic algorithm for detecting stent endothelialization from volumetric optical coherence tomography datasets.
    Bonnema GT; Cardinal KO; Williams SK; Barton JK
    Phys Med Biol; 2008 Jun; 53(12):3083-98. PubMed ID: 18495980
    [TBL] [Abstract][Full Text] [Related]  

  • 59. SU-E-I-90: Fast and Robust Algorithm Towards Vessel Lumen and Stent Strut Detection in Optical Coherence Tomography.
    Mandelias K; Tsantis S; Karnabatidis D; Katsakiori P; Mihailidis D; Nikiforidis G; Kagadis GC
    Med Phys; 2012 Jun; 39(6Part5):3645-3646. PubMed ID: 28517652
    [TBL] [Abstract][Full Text] [Related]  

  • 60. The OCT-ORION Study: A Randomized Optical Coherence Tomography Study Comparing Resolute Integrity to Biomatrix Drug-Eluting Stent on the Degree of Early Stent Healing and Late Lumen Loss.
    Lee SWL; Tam FCC; Lam SCC; Kong SL; Shea CP; Chan KKW; Wong MKL; Chan MPH; Wong AYT; Yung ASY; Lam YM; Zhang LW; Wu KKY; Mintz GS; Maehara A
    Circ Cardiovasc Interv; 2018 Apr; 11(4):e006034. PubMed ID: 29654119
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.