These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
723 related articles for article (PubMed ID: 29560824)
1. In silico drug combination discovery for personalized cancer therapy. Jeon M; Kim S; Park S; Lee H; Kang J BMC Syst Biol; 2018 Mar; 12(Suppl 2):16. PubMed ID: 29560824 [TBL] [Abstract][Full Text] [Related]
2. Synergy from gene expression and network mining (SynGeNet) method predicts synergistic drug combinations for diverse melanoma genomic subtypes. Regan-Fendt KE; Xu J; DiVincenzo M; Duggan MC; Shakya R; Na R; Carson WE; Payne PRO; Li F NPJ Syst Biol Appl; 2019; 5():6. PubMed ID: 30820351 [TBL] [Abstract][Full Text] [Related]
3. An integrated framework for identification of effective and synergistic anti-cancer drug combinations. Sharma A; Rani R J Bioinform Comput Biol; 2018 Oct; 16(5):1850017. PubMed ID: 30304987 [TBL] [Abstract][Full Text] [Related]
4. Synergistic Drug Combination Prediction by Integrating Multiomics Data in Deep Learning Models. Zhang T; Zhang L; Payne PRO; Li F Methods Mol Biol; 2021; 2194():223-238. PubMed ID: 32926369 [TBL] [Abstract][Full Text] [Related]
5. Network Propagation Predicts Drug Synergy in Cancers. Li H; Li T; Quang D; Guan Y Cancer Res; 2018 Sep; 78(18):5446-5457. PubMed ID: 30054332 [TBL] [Abstract][Full Text] [Related]
6. Drug combination sensitivity scoring facilitates the discovery of synergistic and efficacious drug combinations in cancer. Malyutina A; Majumder MM; Wang W; Pessia A; Heckman CA; Tang J PLoS Comput Biol; 2019 May; 15(5):e1006752. PubMed ID: 31107860 [TBL] [Abstract][Full Text] [Related]
7. Ensemble Prediction of Synergistic Drug Combinations Incorporating Biological, Chemical, Pharmacological, and Network Knowledge. Ding P; Yin R; Luo J; Kwoh CK IEEE J Biomed Health Inform; 2019 May; 23(3):1336-1345. PubMed ID: 29994408 [TBL] [Abstract][Full Text] [Related]
8. TranSynergy: Mechanism-driven interpretable deep neural network for the synergistic prediction and pathway deconvolution of drug combinations. Liu Q; Xie L PLoS Comput Biol; 2021 Feb; 17(2):e1008653. PubMed ID: 33577560 [TBL] [Abstract][Full Text] [Related]
9. SNSynergy: Similarity network-based machine learning framework for synergy prediction towards new cell lines and new anticancer drug combinations. Huangfu X; Zhang C; Li H; Li S; Li Y Comput Biol Chem; 2024 Jun; 110():108054. PubMed ID: 38522389 [TBL] [Abstract][Full Text] [Related]
10. In-silico Prediction of Synergistic Anti-Cancer Drug Combinations Using Multi-omics Data. Celebi R; Bear Don't Walk O; Movva R; Alpsoy S; Dumontier M Sci Rep; 2019 Jun; 9(1):8949. PubMed ID: 31222109 [TBL] [Abstract][Full Text] [Related]
11. A simple gene set-based method accurately predicts the synergy of drug pairs. Hsu YC; Chiu YC; Chen Y; Hsiao TH; Chuang EY BMC Syst Biol; 2016 Aug; 10 Suppl 3(Suppl 3):66. PubMed ID: 27585722 [TBL] [Abstract][Full Text] [Related]
12. Prediction of synergistic anti-cancer drug combinations based on drug target network and drug induced gene expression profiles. Li X; Xu Y; Cui H; Huang T; Wang D; Lian B; Li W; Qin G; Chen L; Xie L Artif Intell Med; 2017 Nov; 83():35-43. PubMed ID: 28583437 [TBL] [Abstract][Full Text] [Related]
13. DeepSynergy: predicting anti-cancer drug synergy with Deep Learning. Preuer K; Lewis RPI; Hochreiter S; Bender A; Bulusu KC; Klambauer G Bioinformatics; 2018 May; 34(9):1538-1546. PubMed ID: 29253077 [TBL] [Abstract][Full Text] [Related]
14. A novel approach to predicting the synergy of anti-cancer drug combinations using document-based feature extraction. Shim Y; Lee M; Kim PJ; Kim HG BMC Bioinformatics; 2022 May; 23(1):163. PubMed ID: 35513784 [TBL] [Abstract][Full Text] [Related]
15. DTF: Deep Tensor Factorization for predicting anticancer drug synergy. Sun Z; Huang S; Jiang P; Hu P Bioinformatics; 2020 Aug; 36(16):4483-4489. PubMed ID: 32369563 [TBL] [Abstract][Full Text] [Related]
16. DrugCombDB: a comprehensive database of drug combinations toward the discovery of combinatorial therapy. Liu H; Zhang W; Zou B; Wang J; Deng Y; Deng L Nucleic Acids Res; 2020 Jan; 48(D1):D871-D881. PubMed ID: 31665429 [TBL] [Abstract][Full Text] [Related]
17. An In Silico Method for Predicting Drug Synergy Based on Multitask Learning. Chen X; Luo L; Shen C; Ding P; Luo J Interdiscip Sci; 2021 Jun; 13(2):299-311. PubMed ID: 33611781 [TBL] [Abstract][Full Text] [Related]
18. RECOVER identifies synergistic drug combinations in vitro through sequential model optimization. Bertin P; Rector-Brooks J; Sharma D; Gaudelet T; Anighoro A; Gross T; Martínez-Peña F; Tang EL; Suraj MS; Regep C; Hayter JBR; Korablyov M; Valiante N; van der Sloot A; Tyers M; Roberts CES; Bronstein MM; Lairson LL; Taylor-King JP; Bengio Y Cell Rep Methods; 2023 Oct; 3(10):100599. PubMed ID: 37797618 [TBL] [Abstract][Full Text] [Related]
19. Predicting drug synergy for precision medicine using network biology and machine learning. Cuvitoglu A; Zhou JX; Huang S; Isik Z J Bioinform Comput Biol; 2019 Apr; 17(2):1950012. PubMed ID: 31057072 [TBL] [Abstract][Full Text] [Related]
20. Drug synergy model for malignant diseases using deep learning. Rani P; Dutta K; Kumar V J Bioinform Comput Biol; 2023 Jun; 21(3):2350014. PubMed ID: 37350313 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]