BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

196 related articles for article (PubMed ID: 29561779)

  • 1. Mutagenesis Study of the Cytochrome c Subunit Responsible for the Direct Electron Transfer-Type Catalytic Activity of FAD-Dependent Glucose Dehydrogenase.
    Yamashita Y; Suzuki N; Hirose N; Kojima K; Tsugawa W; Sode K
    Int J Mol Sci; 2018 Mar; 19(4):. PubMed ID: 29561779
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An Fe-S cluster in the conserved Cys-rich region in the catalytic subunit of FAD-dependent dehydrogenase complexes.
    Shiota M; Yamazaki T; Yoshimatsu K; Kojima K; Tsugawa W; Ferri S; Sode K
    Bioelectrochemistry; 2016 Dec; 112():178-83. PubMed ID: 26951961
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The electrochemical behavior of a FAD dependent glucose dehydrogenase with direct electron transfer subunit by immobilization on self-assembled monolayers.
    Lee I; Loew N; Tsugawa W; Lin CE; Probst D; La Belle JT; Sode K
    Bioelectrochemistry; 2018 Jun; 121():1-6. PubMed ID: 29291433
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Designer fungus FAD glucose dehydrogenase capable of direct electron transfer.
    Ito K; Okuda-Shimazaki J; Mori K; Kojima K; Tsugawa W; Ikebukuro K; Lin CE; La Belle J; Yoshida H; Sode K
    Biosens Bioelectron; 2019 Jan; 123():114-123. PubMed ID: 30057265
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Creation of a novel DET type FAD glucose dehydrogenase harboring Escherichia coli derived cytochrome b
    Yanase T; Okuda-Shimazaki J; Mori K; Kojima K; Tsugawa W; Sode K
    Biochem Biophys Res Commun; 2020 Sep; 530(1):82-86. PubMed ID: 32828319
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Highly Efficient Flavin-Adenine Dinucleotide Glucose Dehydrogenase Fused to a Minimal Cytochrome C Domain.
    Algov I; Grushka J; Zarivach R; Alfonta L
    J Am Chem Soc; 2017 Dec; 139(48):17217-17220. PubMed ID: 28915057
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Site directed mutagenesis studies of FAD-dependent glucose dehydrogenase catalytic subunit of Burkholderia cepacia.
    Yamaoka H; Yamashita Y; Ferri S; Sode K
    Biotechnol Lett; 2008 Nov; 30(11):1967-72. PubMed ID: 18581061
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparison of Direct and Mediated Electron Transfer in Electrodes with Novel Fungal Flavin Adenine Dinucleotide Glucose Dehydrogenase.
    Ishida K; Orihara K; Muguruma H; Iwasa H; Hiratsuka A; Tsuji K; Kishimoto T
    Anal Sci; 2018; 34(7):783-787. PubMed ID: 29998959
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Construction of Uniform Monolayer- and Orientation-Tunable Enzyme Electrode by a Synthetic Glucose Dehydrogenase without Electron-Transfer Subunit via Optimized Site-Specific Gold-Binding Peptide Capable of Direct Electron Transfer.
    Lee YS; Baek S; Lee H; Reginald SS; Kim Y; Kang H; Choi IG; Chang IS
    ACS Appl Mater Interfaces; 2018 Aug; 10(34):28615-28626. PubMed ID: 30067023
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Strategic design and improvement of the internal electron transfer of heme b domain-fused glucose dehydrogenase for use in direct electron transfer-type glucose sensors.
    Ito K; Okuda-Shimazaki J; Kojima K; Mori K; Tsugawa W; Asano R; Ikebukuro K; Sode K
    Biosens Bioelectron; 2021 Mar; 176():112911. PubMed ID: 33421758
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Direct electron transfer type disposable sensor strip for glucose sensing employing an engineered FAD glucose dehydrogenase.
    Yamashita Y; Ferri S; Huynh ML; Shimizu H; Yamaoka H; Sode K
    Enzyme Microb Technol; 2013 Feb; 52(2):123-8. PubMed ID: 23273282
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Development of a Versatile Method to Construct Direct Electron Transfer-Type Enzyme Complexes Employing SpyCatcher/SpyTag System.
    Yanase T; Okuda-Shimazaki J; Asano R; Ikebukuro K; Sode K; Tsugawa W
    Int J Mol Sci; 2023 Jan; 24(3):. PubMed ID: 36768169
    [TBL] [Abstract][Full Text] [Related]  

  • 13. FAD dependent glucose dehydrogenases - Discovery and engineering of representative glucose sensing enzymes.
    Okuda-Shimazaki J; Yoshida H; Sode K
    Bioelectrochemistry; 2020 Apr; 132():107414. PubMed ID: 31838457
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Biosensing and electrochemical properties of flavin adenine dinucleotide (FAD)-Dependent glucose dehydrogenase (GDH) fused to a gold binding peptide.
    Lee H; Lee YS; Reginald SS; Baek S; Lee EM; Choi IG; Chang IS
    Biosens Bioelectron; 2020 Oct; 165():112427. PubMed ID: 32729543
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Engineered fungus derived FAD-dependent glucose dehydrogenase with acquired ability to utilize hexaammineruthenium(III) as an electron acceptor.
    Okurita M; Suzuki N; Loew N; Yoshida H; Tsugawa W; Mori K; Kojima K; Klonoff DC; Sode K
    Bioelectrochemistry; 2018 Oct; 123():62-69. PubMed ID: 29727765
    [TBL] [Abstract][Full Text] [Related]  

  • 16. In Vitro Evaluation of Miniaturized Amperometric Enzyme Sensor Based on the Direct Electron Transfer Principle for Continuous Glucose Monitoring.
    Inoue Y; Kusaka Y; Shinozaki K; Lee I; Sode K
    J Diabetes Sci Technol; 2022 Sep; 16(5):1101-1106. PubMed ID: 34986665
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Site-specifically wired and oriented glucose dehydrogenase fused to a minimal cytochrome with high glucose sensing sensitivity.
    Algov I; Feiertag A; Alfonta L
    Biosens Bioelectron; 2021 May; 180():113117. PubMed ID: 33677358
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A Bacterial Multidomain NAD-Independent d-Lactate Dehydrogenase Utilizes Flavin Adenine Dinucleotide and Fe-S Clusters as Cofactors and Quinone as an Electron Acceptor for d-Lactate Oxidization.
    Jiang T; Guo X; Yan J; Zhang Y; Wang Y; Zhang M; Sheng B; Ma C; Xu P; Gao C
    J Bacteriol; 2017 Nov; 199(22):. PubMed ID: 28847921
    [TBL] [Abstract][Full Text] [Related]  

  • 19. X-ray structure of the direct electron transfer-type FAD glucose dehydrogenase catalytic subunit complexed with a hitchhiker protein.
    Yoshida H; Kojima K; Shiota M; Yoshimatsu K; Yamazaki T; Ferri S; Tsugawa W; Kamitori S; Sode K
    Acta Crystallogr D Struct Biol; 2019 Sep; 75(Pt 9):841-851. PubMed ID: 31478907
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Histidine 61: an important heme ligand in the soluble fumarate reductase from Shewanella frigidimarina.
    Rothery EL; Mowat CG; Miles CS; Walkinshaw MD; Reid GA; Chapman SK
    Biochemistry; 2003 Nov; 42(45):13160-9. PubMed ID: 14609326
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.