These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 29561874)

  • 1. Rapid carbon accumulation following managed realignment on the Bay of Fundy.
    Wollenberg JT; Ollerhead J; Chmura GL
    PLoS One; 2018; 13(3):e0193930. PubMed ID: 29561874
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Greenhouse gas flux with reflooding of a drained salt marsh soil.
    Wollenberg JT; Biswas A; Chmura GL
    PeerJ; 2018; 6():e5659. PubMed ID: 30479881
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Exotic Spartina alterniflora invasion alters ecosystem-atmosphere exchange of CH4 and N2O and carbon sequestration in a coastal salt marsh in China.
    Yuan J; Ding W; Liu D; Kang H; Freeman C; Xiang J; Lin Y
    Glob Chang Biol; 2015 Apr; 21(4):1567-80. PubMed ID: 25367159
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Carbon Sequestration in Tidal Salt Marshes of the Northeast United States.
    Drake K; Halifax H; Adamowicz SC; Craft C
    Environ Manage; 2015 Oct; 56(4):998-1008. PubMed ID: 26108413
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Plant biomass and rates of carbon dioxide uptake are enhanced by successful restoration of tidal connectivity in salt marshes.
    Wang F; Eagle M; Kroeger KD; Spivak AC; Tang J
    Sci Total Environ; 2021 Jan; 750():141566. PubMed ID: 32882493
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Deposition and burial of organic carbon in coastal salt marsh: research progress].
    Cao L; Song JM; Li XG; Yuan HM; Li N; Duan LQ
    Ying Yong Sheng Tai Xue Bao; 2013 Jul; 24(7):2040-8. PubMed ID: 24175538
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Vegetation zones as indicators of denitrification potential in salt marshes.
    Ooi SK; Barry A; Lawrence BA; Elphick CS; Helton AM
    Ecol Appl; 2022 Sep; 32(6):e2630. PubMed ID: 35403778
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Spartina alterniflora invasion affects soil carbon in a C
    Wang M; Wang Q; Sha C; Chen J
    Sci Rep; 2018 Jan; 8(1):628. PubMed ID: 29330518
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Estuarine Sediment Microbiomes from a Chronosequence of Restored Urban Salt Marshes.
    Morris N; Alldred M; Zarnoch C; Alter SE
    Microb Ecol; 2023 Apr; 85(3):916-930. PubMed ID: 36826588
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Rapid shoreward encroachment of salt marsh cordgrass in response to accelerated sea-level rise.
    Donnelly JP; Bertness MD
    Proc Natl Acad Sci U S A; 2001 Dec; 98(25):14218-23. PubMed ID: 11724926
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Soil microbial community development across a 32-year coastal wetland restoration time series and the relative importance of environmental factors.
    Abbott KM; Quirk T; Fultz LM
    Sci Total Environ; 2022 May; 821():153359. PubMed ID: 35081409
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Response of salt marshes to oiling from the Deepwater Horizon spill: Implications for plant growth, soil surface-erosion, and shoreline stability.
    Lin Q; Mendelssohn IA; Graham SA; Hou A; Fleeger JW; Deis DR
    Sci Total Environ; 2016 Jul; 557-558():369-77. PubMed ID: 27016685
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Salt marsh restoration: an overview of techniques and success indicators.
    Billah MM; Bhuiyan MKA; Islam MA; Das J; Hoque AR
    Environ Sci Pollut Res Int; 2022 Mar; 29(11):15347-15363. PubMed ID: 34989993
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Native plant restoration combats environmental change: development of carbon and nitrogen sequestration capacity using small cordgrass in European salt marshes.
    Curado G; Rubio-Casal AE; Figueroa E; Grewell BJ; Castillo JM
    Environ Monit Assess; 2013 Oct; 185(10):8439-49. PubMed ID: 23591677
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Rapid carbon accumulation at a saltmarsh restored by managed realignment exceeded carbon emitted in direct site construction.
    Mossman HL; Pontee N; Born K; Hill C; Lawrence PJ; Rae S; Scott J; Serato B; Sparkes RB; Sullivan MJP; Dunk RM
    PLoS One; 2022; 17(11):e0259033. PubMed ID: 36449465
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Long-term organic carbon sequestration in tidal marsh sediments is dominated by old-aged allochthonous inputs in a macrotidal estuary.
    Van de Broek M; Vandendriessche C; Poppelmonde D; Merckx R; Temmerman S; Govers G
    Glob Chang Biol; 2018 Jun; 24(6):2498-2512. PubMed ID: 29431887
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mercury accumulation in surface sediments of salt marshes of the Bay of Fundy.
    Hung GA; Chmura GL
    Environ Pollut; 2006 Aug; 142(3):418-31. PubMed ID: 16406165
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Dynamics of carbon, nitrogen and phosphorus storage of three dominant marsh plants in Hangzhou Bay coastal wetland].
    Shao XX; Li WH; Wu M; Yang WY; Jiang KY; Ye XQ
    Huan Jing Ke Xue; 2013 Sep; 34(9):3451-7. PubMed ID: 24288989
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Phosphorus and DOC availability influence the partitioning between bacterioplankton production and respiration in tidal marsh ecosystems.
    del Giorgio PA; Newell RE
    Environ Microbiol; 2012 May; 14(5):1296-307. PubMed ID: 22429301
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Impacts of land reclamation on tidal marsh 'blue carbon' stocks.
    Ewers Lewis CJ; Baldock JA; Hawke B; Gadd PS; Zawadzki A; Heijnis H; Jacobsen GE; Rogers K; Macreadie PI
    Sci Total Environ; 2019 Jul; 672():427-437. PubMed ID: 30965258
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.