These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

60 related articles for article (PubMed ID: 29561924)

  • 21. Experimental and computational investigation on underlying factors promoting high coke resistance in NiCo bimetallic catalysts during dry reforming of methane.
    Saelee T; Lerdpongsiripaisarn M; Rittiruam M; Somdee S; Liu A; Praserthdam S; Praserthdam P
    Sci Rep; 2021 Jan; 11(1):519. PubMed ID: 33436936
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Exploiting two-dimensional morphology of molybdenum oxycarbide to enable efficient catalytic dry reforming of methane.
    Kurlov A; Deeva EB; Abdala PM; Lebedev D; Tsoukalou A; Comas-Vives A; Fedorov A; Müller CR
    Nat Commun; 2020 Oct; 11(1):4920. PubMed ID: 33009379
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Modification of CeNi
    Lanre MS; Abasaeed AE; Fakeeha AH; Ibrahim AA; Alquraini AA; AlReshaidan SB; Al-Fatesh AS
    Materials (Basel); 2022 May; 15(10):. PubMed ID: 35629591
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Unraveling the effect of particle size of active metals in Ni/MgO on methane activation and carbon growth mechanism.
    Chen S; Niu J; Zheng X; Liu H; Jin Y; Ran J
    Phys Chem Chem Phys; 2024 Jan; 26(2):1255-1266. PubMed ID: 38100096
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Tuning methane decomposition on stepped Ni surface: The role of subsurface atoms in catalyst design.
    Arevalo RL; Aspera SM; Escaño MCS; Nakanishi H; Kasai H
    Sci Rep; 2017 Oct; 7(1):13963. PubMed ID: 29070850
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Pulsed laser induced plasma and thermal effects on molybdenum carbide for dry reforming of methane.
    Li Y; Liu X; Wu T; Zhang X; Han H; Liu X; Chen Y; Tang Z; Liu Z; Zhang Y; Liu H; Zhao L; Ma D; Zhou W
    Nat Commun; 2024 Jun; 15(1):5495. PubMed ID: 38944644
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Single-Step Formation of Metal Oxide Nanostructures Wrapped in Mesoporous Silica and Silica-Niobia Catalysts for the Condensation of Furfural with Acetone.
    Skrodczky K; Antunes MM; Zhu Q; Valente AA; Pinna N; Russo PA
    Nanomaterials (Basel); 2023 Nov; 13(23):. PubMed ID: 38063742
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Balancing act: influence of Cu content in NiCu/C catalysts for methane decomposition.
    Schoemaker SE; Bismeijer S; Wezendonk DFL; Meeldijk JD; Welling TAJ; de Jongh PE
    Mater Adv; 2024 May; 5(10):4251-4261. PubMed ID: 38774838
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Butane Dry Reforming Catalyzed by Cobalt Oxide Supported on Ti
    Ronda-Lloret M; Marakatti VS; Sloof WG; Delgado JJ; Sepúlveda-Escribano A; Ramos-Fernandez EV; Rothenberg G; Shiju NR
    ChemSusChem; 2020 Dec; 13(23):6401-6408. PubMed ID: 32945628
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Soccer Ball-like Assembly of Edge-to-edge Oriented 2D-silica Nanosheets: A Promising Catalyst Support for High-Temperature Reforming.
    Jang SW; Kumari N; Nam E; Lee YK; Cha Y; An K; Lee IS
    Angew Chem Int Ed Engl; 2024 Jan; 63(5):e202316630. PubMed ID: 38063060
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Interesting influence of Al
    Chen S; Rong Q; Liu D; Sun N; Yao Z
    Dalton Trans; 2023 Oct; 52(41):14757-14761. PubMed ID: 37819243
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Local Structures of Ex-Solved Nanoparticles Identified by Machine-Learned Potentials.
    Kang S; Kim JK; Kim H; Son YH; Chang J; Kim J; Kim DW; Lee JM; Kwon HJ
    Nano Lett; 2024 Apr; 24(14):4224-4232. PubMed ID: 38557115
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Theoretical insights into C-H bond activation of methane by transition metal clusters: the role of anharmonic effects.
    Bhumla P; Kumar M; Bhattacharya S
    Nanoscale Adv; 2021 Jan; 3(2):575-583. PubMed ID: 36131731
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Elucidation of the reaction mechanism on dry reforming of methane in an electric field by
    Nakano N; Torimoto M; Sampei H; Yamashita R; Yamano R; Saegusa K; Motomura A; Nagakawa K; Tsuneki H; Ogo S; Sekine Y
    RSC Adv; 2022 Mar; 12(15):9036-9043. PubMed ID: 35424901
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Facile synthesis of highly disperse Ni-Co nanoparticles over mesoporous silica for enhanced methane dry reforming.
    Das S; Sengupta M; Bag A; Shah M; Bordoloi A
    Nanoscale; 2018 Apr; 10(14):6409-6425. PubMed ID: 29561924
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Highly coke-resistant ni nanoparticle catalysts with minimal sintering in dry reforming of methane.
    Han JW; Kim C; Park JS; Lee H
    ChemSusChem; 2014 Feb; 7(2):451-6. PubMed ID: 24402833
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Surface Spectroscopy on UHV-Grown and Technological Ni-ZrO
    Anic K; Wolfbeisser A; Li H; Rameshan C; Föttinger K; Bernardi J; Rupprechter G
    Top Catal; 2016; 59(17):1614-1627. PubMed ID: 28035177
    [TBL] [Abstract][Full Text] [Related]  

  • 38. An investigation on the relationship between physicochemical characteristics of alumina-supported cobalt catalyst and its performance in dry reforming of methane.
    Khairudin NF; Mohammadi M; Mohamed AR
    Environ Sci Pollut Res Int; 2021 Jun; 28(23):29157-29176. PubMed ID: 33550559
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A review of dry (CO2) reforming of methane over noble metal catalysts.
    Pakhare D; Spivey J
    Chem Soc Rev; 2014 Nov; 43(22):7813-37. PubMed ID: 24504089
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A Review on Bimetallic Nickel-Based Catalysts for CO
    Bian Z; Das S; Wai MH; Hongmanorom P; Kawi S
    Chemphyschem; 2017 Nov; 18(22):3117-3134. PubMed ID: 28710875
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 3.