These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

442 related articles for article (PubMed ID: 29561927)

  • 1. Crosstalk of the structural and zinc buffering properties of mammalian metallothionein-2.
    Drozd A; Wojewska D; Peris-Díaz MD; Jakimowicz P; Krężel A
    Metallomics; 2018 Apr; 10(4):595-613. PubMed ID: 29561927
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An Integrated Mass Spectrometry and Molecular Dynamics Simulations Approach Reveals the Spatial Organization Impact of Metal-Binding Sites on the Stability of Metal-Depleted Metallothionein-2 Species.
    Peris-Díaz MD; Guran R; Domene C; de Los Rios V; Zitka O; Adam V; Krężel A
    J Am Chem Soc; 2021 Oct; 143(40):16486-16501. PubMed ID: 34477370
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Putting the pieces into place: Properties of intact zinc metallothionein 1A determined from interaction of its isolated domains with carbonic anhydrase.
    Pinter TB; Stillman MJ
    Biochem J; 2015 Nov; 471(3):347-56. PubMed ID: 26475450
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Challenging conventional wisdom: single domain metallothioneins.
    Sutherland DE; Stillman MJ
    Metallomics; 2014 Apr; 6(4):702-28. PubMed ID: 24469686
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The connection of α- and β-domains in mammalian metallothionein-2 differentiates Zn(II) binding affinities, affects folding, and determines zinc buffering properties.
    Singh AK; Pomorski A; Wu S; Peris-Díaz MD; Czepczyńska-Krężel H; Krężel A
    Metallomics; 2023 Jun; 15(6):. PubMed ID: 37147085
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Single-domain metallothioneins: evidence of the onset of clustered metal binding domains in Zn-rhMT 1a.
    Summers KL; Sutherland DE; Stillman MJ
    Biochemistry; 2013 Apr; 52(14):2461-71. PubMed ID: 23506369
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Defining the metal binding pathways of human metallothionein 1a: balancing zinc availability and cadmium seclusion.
    Irvine GW; Pinter TB; Stillman MJ
    Metallomics; 2016 Jan; 8(1):71-81. PubMed ID: 26583802
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The Functions of Metamorphic Metallothioneins in Zinc and Copper Metabolism.
    Krężel A; Maret W
    Int J Mol Sci; 2017 Jun; 18(6):. PubMed ID: 28598392
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Non-coordinative metal selectivity bias in human metallothioneins metal-thiolate clusters.
    Calvo JS; Lopez VM; Meloni G
    Metallomics; 2018 Dec; 10(12):1777-1791. PubMed ID: 30420986
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Kinetics of Zinc and Cadmium Exchanges between Metallothionein and Carbonic Anhydrase.
    Pinter TB; Stillman MJ
    Biochemistry; 2015 Oct; 54(40):6284-93. PubMed ID: 26401817
    [TBL] [Abstract][Full Text] [Related]  

  • 11. From methodological limitations to the function of metallothioneins - a guide to approaches for determining weak, moderate, and tight affinity zinc sites.
    Pomorski A; Drozd A; Kocyła A; Krężel A
    Metallomics; 2023 May; 15(5):. PubMed ID: 37113075
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Zinc(II) is required for the in vivo and in vitro folding of mouse copper metallothionein in two domains.
    Bofill R; Capdevila M; Cols N; Atrian S; Gonzàlez-Duarte P
    J Biol Inorg Chem; 2001 Apr; 6(4):405-17. PubMed ID: 11372199
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Chromatographic separation of similar post-translationally modified metallothioneins reveals the changing conformations of apo-MT upon cysteine alkylation by high resolution LC-ESI-MS.
    Irvine GW; Stillman MJ
    Biochim Biophys Acta Proteins Proteom; 2018; 1866(5-6):589-601. PubMed ID: 29518586
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Differentiated Zn(II) binding affinities in animal, plant, and bacterial metallothioneins define their zinc buffering capacity at physiological pZn.
    Mosna K; Jurczak K; Krężel A
    Metallomics; 2023 Oct; 15(10):. PubMed ID: 37804185
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Domain Selection in Metallothionein 1A: Affinity-Controlled Mechanisms of Zinc Binding and Cadmium Exchange.
    Pinter TB; Irvine GW; Stillman MJ
    Biochemistry; 2015 Aug; 54(32):5006-16. PubMed ID: 26167879
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Metal binding of metallothionein-3 versus metallothionein-2: lower affinity and higher plasticity.
    Palumaa P; Tammiste I; Kruusel K; Kangur L; Jörnvall H; Sillard R
    Biochim Biophys Acta; 2005 Mar; 1747(2):205-11. PubMed ID: 15698955
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ag
    Dong S; Shirzadeh M; Fan L; Laganowsky A; Russell DH
    Anal Chem; 2020 Jul; 92(13):8923-8932. PubMed ID: 32515580
    [TBL] [Abstract][Full Text] [Related]  

  • 18. ESI-MS analysis of Cu(I) binding to apo and Zn7 human metallothionein 1A, 2, and 3 identifies the formation of a similar series of metallated species with no individual isoform optimization for Cu(I).
    Melenbacher A; Stillman MJ
    Metallomics; 2024 Apr; 16(4):. PubMed ID: 38503570
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Modeling the Zn(2+) and Cd(2+) metalation mechanism in mammalian metallothionein 1a.
    Sutherland DE; Summers KL; Stillman MJ
    Biochem Biophys Res Commun; 2012 Oct; 426(4):601-7. PubMed ID: 22982309
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structural Characterization of Cu(I)/Zn(II)-metallothionein-3 by Ion Mobility Mass Spectrometry and Top-Down Mass Spectrometry.
    Peris-Díaz MD; Wu S; Mosna K; Liggett E; Barkhanskiy A; Orzeł A; Barran P; Krężel A
    Anal Chem; 2023 Jul; 95(29):10966-10974. PubMed ID: 37440218
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 23.