BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 29562109)

  • 41. Ionic liquids-based hydrolysis of Chlorella biomass for fermentable sugars.
    Zhou N; Zhang Y; Gong X; Wang Q; Ma Y
    Bioresour Technol; 2012 Aug; 118():512-7. PubMed ID: 22717571
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Implication of Industrial Waste for Biomass and Lipid Production in Chlorella minutissima Under Autotrophic, Heterotrophic, and Mixotrophic Grown Conditions.
    Dubey KK; Kumar S; Dixit D; Kumar P; Kumar D; Jawed A; Haque S
    Appl Biochem Biotechnol; 2015 Jul; 176(6):1581-95. PubMed ID: 25971804
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Cultivation of different microalgae with pentose as carbon source and the effects on the carbohydrate content.
    de Freitas BCB; Brächer EH; de Morais EG; Atala DIP; de Morais MG; Costa JAV
    Environ Technol; 2019 Mar; 40(8):1062-1070. PubMed ID: 29251249
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Comparative evaluation of chemical and enzymatic saccharification of mixotrophically grown de-oiled microalgal biomass for reducing sugar production.
    Pancha I; Chokshi K; Maurya R; Bhattacharya S; Bachani P; Mishra S
    Bioresour Technol; 2016 Mar; 204():9-16. PubMed ID: 26771924
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Enzymatic pretreatment of algal biomass has different optimal conditions for biogas and bioethanol routes.
    Bhushan S; Rana MS; Bhandari M; Sharma AK; Simsek H; Prajapati SK
    Chemosphere; 2021 Dec; 284():131264. PubMed ID: 34216928
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Two-step in situ biodiesel production from microalgae with high free fatty acid content.
    Dong T; Wang J; Miao C; Zheng Y; Chen S
    Bioresour Technol; 2013 May; 136():8-15. PubMed ID: 23548399
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Microalgal system for treatment of effluent from poultry litter anaerobic digestion.
    Singh M; Reynolds DL; Das KC
    Bioresour Technol; 2011 Dec; 102(23):10841-8. PubMed ID: 21967714
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Applications of de-oiled microalgal biomass towards development of sustainable biorefinery.
    Maurya R; Paliwal C; Ghosh T; Pancha I; Chokshi K; Mitra M; Ghosh A; Mishra S
    Bioresour Technol; 2016 Aug; 214():787-796. PubMed ID: 27161655
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Feasibility of biodiesel production by microalgae Chlorella sp. (FACHB-1748) under outdoor conditions.
    Zhou X; Xia L; Ge H; Zhang D; Hu C
    Bioresour Technol; 2013 Jun; 138():131-5. PubMed ID: 23612171
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Chemo-enzymatic saccharification and bioethanol fermentation of lipid-extracted residual biomass of the microalga, Dunaliella tertiolecta.
    Lee OK; Kim AL; Seong DH; Lee CG; Jung YT; Lee JW; Lee EY
    Bioresour Technol; 2013 Mar; 132():197-201. PubMed ID: 23411448
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Evaluation of microalgae cultivation using recovered aqueous co-product from thermochemical liquefaction of algal biomass.
    Jena U; Vaidyanathan N; Chinnasamy S; Das KC
    Bioresour Technol; 2011 Feb; 102(3):3380-7. PubMed ID: 20970327
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Engineering strategies for improving the CO2 fixation and carbohydrate productivity of Scenedesmus obliquus CNW-N used for bioethanol fermentation.
    Ho SH; Kondo A; Hasunuma T; Chang JS
    Bioresour Technol; 2013 Sep; 143():163-71. PubMed ID: 23792755
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Sequential modelling for carbohydrate and bioethanol production from Chlorella saccharophila CCALA 258: a complementary experimental and theoretical approach for microalgal bioethanol production.
    Onay M
    Environ Sci Pollut Res Int; 2022 Feb; 29(10):14316-14332. PubMed ID: 34608581
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Lipid production combined with biosorption and bioaccumulation of cadmium, copper, manganese and zinc by oleaginous microalgae Chlorella minutissima UTEX2341.
    Yang J; Cao J; Xing G; Yuan H
    Bioresour Technol; 2015 Jan; 175():537-44. PubMed ID: 25459865
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Biomass and lipid production of heterotrophic microalgae Chlorella protothecoides by using biodiesel-derived crude glycerol.
    Chen YH; Walker TH
    Biotechnol Lett; 2011 Oct; 33(10):1973-83. PubMed ID: 21691839
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Liquid triphasic systems as sustainable downstream processing of Chlorella sp. biorefinery for potential biofuels and feed production.
    Koyande AK; Chew KW; Show PL; Munawaroh HSH; Chang JS
    Bioresour Technol; 2021 Aug; 333():125075. PubMed ID: 33872996
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Bioethanol from Spirulina platensis biomass and the use of residuals to produce biomethane: An energy efficient approach.
    Rempel A; de Souza Sossella F; Margarites AC; Astolfi AL; Steinmetz RLR; Kunz A; Treichel H; Colla LM
    Bioresour Technol; 2019 Sep; 288():121588. PubMed ID: 31176943
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Challenges for the production of bioethanol from biomass using recombinant yeasts.
    Kricka W; Fitzpatrick J; Bond U
    Adv Appl Microbiol; 2015; 92():89-125. PubMed ID: 26003934
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Pentoses and light intensity increase the growth and carbohydrate production and alter the protein profile of Chlorella minutissima.
    Freitas BCB; Cassuriaga APA; Morais MG; Costa JAV
    Bioresour Technol; 2017 Aug; 238():248-253. PubMed ID: 28437642
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Comparison of cell rupturing by ozonation and ultrasonication for algal lipid extraction from Chlorella vulgaris.
    Huang Y; Hong A; Zhang D; Li L
    Environ Technol; 2014; 35(5-8):931-7. PubMed ID: 24645476
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.