These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
233 related articles for article (PubMed ID: 29562129)
1. How Accurate Is Density Functional Theory at Predicting Dipole Moments? An Assessment Using a New Database of 200 Benchmark Values. Hait D; Head-Gordon M J Chem Theory Comput; 2018 Apr; 14(4):1969-1981. PubMed ID: 29562129 [TBL] [Abstract][Full Text] [Related]
2. How accurate are static polarizability predictions from density functional theory? An assessment over 132 species at equilibrium geometry. Hait D; Head-Gordon M Phys Chem Chem Phys; 2018 Aug; 20(30):19800-19810. PubMed ID: 30028466 [TBL] [Abstract][Full Text] [Related]
3. Zn Coordination Chemistry: Development of Benchmark Suites for Geometries, Dipole Moments, and Bond Dissociation Energies and Their Use To Test and Validate Density Functionals and Molecular Orbital Theory. Amin EA; Truhlar DG J Chem Theory Comput; 2008 Jan; 4(1):75-85. PubMed ID: 26619981 [TBL] [Abstract][Full Text] [Related]
4. On the accuracy of computed excited-state dipole moments. King RA J Phys Chem A; 2008 Jun; 112(25):5727-33. PubMed ID: 18517183 [TBL] [Abstract][Full Text] [Related]
5. Can Kohn-Sham density functional theory predict accurate charge distributions for both single-reference and multi-reference molecules? Verma P; Truhlar DG Phys Chem Chem Phys; 2017 May; 19(20):12898-12912. PubMed ID: 28474021 [TBL] [Abstract][Full Text] [Related]
6. Evaluation of Local Hybrid Functionals for Electric Properties: Dipole Moments and Static and Dynamic Polarizabilities. Grotjahn R; Lauter GJ; Haasler M; Kaupp M J Phys Chem A; 2020 Oct; 124(40):8346-8358. PubMed ID: 32892622 [TBL] [Abstract][Full Text] [Related]
7. Assessment of DFT for endohedral complexes' dipole moment: PNO-LCCSD-F12 as a reference method. Kozłowska J; Schwilk M; Roztoczyńska A; Bartkowiak W Phys Chem Chem Phys; 2018 Nov; 20(46):29374-29388. PubMed ID: 30451255 [TBL] [Abstract][Full Text] [Related]
8. State-of-the-art computations of dipole moments using analytic gradients of high-level density-fitted coupled-cluster methods with focal-point approximations. Bozkaya U; Soydaş E; Filiz B J Comput Chem; 2020 Mar; 41(8):769-779. PubMed ID: 31837038 [TBL] [Abstract][Full Text] [Related]
9. Benchmarking quantum chemical methods for the calculation of molecular dipole moments and polarizabilities. Hickey AL; Rowley CN J Phys Chem A; 2014 May; 118(20):3678-87. PubMed ID: 24796376 [TBL] [Abstract][Full Text] [Related]
10. Computation of Dipole Moments: A Recommendation on the Choice of the Basis Set and the Level of Theory. Zapata JC; McKemmish LK J Phys Chem A; 2020 Sep; 124(37):7538-7548. PubMed ID: 32835485 [TBL] [Abstract][Full Text] [Related]
11. Too big, too small, or just right? A benchmark assessment of density functional theory for predicting the spatial extent of the electron density of small chemical systems. Hait D; Liang YH; Head-Gordon M J Chem Phys; 2021 Feb; 154(7):074109. PubMed ID: 33607884 [TBL] [Abstract][Full Text] [Related]
12. Third-Order Møller-Plesset Theory Made More Useful? The Role of Density Functional Theory Orbitals. Rettig A; Hait D; Bertels LW; Head-Gordon M J Chem Theory Comput; 2020 Dec; 16(12):7473-7489. PubMed ID: 33161713 [TBL] [Abstract][Full Text] [Related]
13. A thorough benchmark of density functional methods for general main group thermochemistry, kinetics, and noncovalent interactions. Goerigk L; Grimme S Phys Chem Chem Phys; 2011 Apr; 13(14):6670-88. PubMed ID: 21384027 [TBL] [Abstract][Full Text] [Related]
14. Static and frequency-dependent dipole-dipole polarizabilities of all closed-shell atoms up to radium: a four-component relativistic DFT study. Bast R; Hesselmann A; Sałek P; Helgaker T; Saue T Chemphyschem; 2008 Feb; 9(3):445-53. PubMed ID: 18224633 [TBL] [Abstract][Full Text] [Related]
15. Systematic Evaluation of Modern Density Functional Methods for the Computation of NMR Shifts of 3d Transition-Metal Nuclei. Schattenberg CJ; Lehmann M; Bühl M; Kaupp M J Chem Theory Comput; 2022 Jan; 18(1):273-292. PubMed ID: 34968062 [TBL] [Abstract][Full Text] [Related]
16. Validation of local hybrid functionals for TDDFT calculations of electronic excitation energies. Maier TM; Bahmann H; Arbuznikov AV; Kaupp M J Chem Phys; 2016 Feb; 144(7):074106. PubMed ID: 26896975 [TBL] [Abstract][Full Text] [Related]
17. Is It Possible To Obtain Coupled Cluster Quality Energies at near Density Functional Theory Cost? Domain-Based Local Pair Natural Orbital Coupled Cluster vs Modern Density Functional Theory. Liakos DG; Neese F J Chem Theory Comput; 2015 Sep; 11(9):4054-63. PubMed ID: 26575901 [TBL] [Abstract][Full Text] [Related]
18. Model Chemistry Recommendations for Scaled Harmonic Frequency Calculations: A Benchmark Study. Zapata Trujillo JC; McKemmish LK J Phys Chem A; 2023 Feb; 127(7):1715-1735. PubMed ID: 36753303 [TBL] [Abstract][Full Text] [Related]
19. Dipole moments of molecules with multi-reference character from optimally tuned range-separated density functional theory. Alipour M J Comput Chem; 2018 Jul; 39(20):1508-1516. PubMed ID: 29635817 [TBL] [Abstract][Full Text] [Related]
20. Comparison of the Transition Dipole Moments Calculated by TDDFT with High Level Wave Function Theory. Robinson D J Chem Theory Comput; 2018 Oct; 14(10):5303-5309. PubMed ID: 30068079 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]