These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

327 related articles for article (PubMed ID: 29562172)

  • 1. Hippocampal Global Remapping Can Occur without Input from the Medial Entorhinal Cortex.
    Schlesiger MI; Boublil BL; Hales JB; Leutgeb JK; Leutgeb S
    Cell Rep; 2018 Mar; 22(12):3152-3159. PubMed ID: 29562172
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hippocampal remapping and grid realignment in entorhinal cortex.
    Fyhn M; Hafting T; Treves A; Moser MB; Moser EI
    Nature; 2007 Mar; 446(7132):190-4. PubMed ID: 17322902
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The medial entorhinal cortex is necessary for temporal organization of hippocampal neuronal activity.
    Schlesiger MI; Cannova CC; Boublil BL; Hales JB; Mankin EA; Brandon MP; Leutgeb JK; Leibold C; Leutgeb S
    Nat Neurosci; 2015 Aug; 18(8):1123-32. PubMed ID: 26120964
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Novel Mechanism for the Grid-to-Place Cell Transformation Revealed by Transgenic Depolarization of Medial Entorhinal Cortex Layer II.
    Kanter BR; Lykken CM; Avesar D; Weible A; Dickinson J; Dunn B; Borgesius NZ; Roudi Y; Kentros CG
    Neuron; 2017 Mar; 93(6):1480-1492.e6. PubMed ID: 28334610
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Spatial and memory circuits in the medial entorhinal cortex.
    Sasaki T; Leutgeb S; Leutgeb JK
    Curr Opin Neurobiol; 2015 Jun; 32():16-23. PubMed ID: 25463560
    [TBL] [Abstract][Full Text] [Related]  

  • 6. How do spatial learning and memory occur in the brain? Coordinated learning of entorhinal grid cells and hippocampal place cells.
    Pilly PK; Grossberg S
    J Cogn Neurosci; 2012 May; 24(5):1031-54. PubMed ID: 22288394
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Stability of medial entorhinal cortex representations over time.
    Diehl GW; Hon OJ; Leutgeb S; Leutgeb JK
    Hippocampus; 2019 Mar; 29(3):284-302. PubMed ID: 30175425
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hippocampal Remapping after Partial Inactivation of the Medial Entorhinal Cortex.
    Miao C; Cao Q; Ito HT; Yamahachi H; Witter MP; Moser MB; Moser EI
    Neuron; 2015 Nov; 88(3):590-603. PubMed ID: 26539894
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Disrupted Place Cell Remapping and Impaired Grid Cells in a Knockin Model of Alzheimer's Disease.
    Jun H; Bramian A; Soma S; Saito T; Saido TC; Igarashi KM
    Neuron; 2020 Sep; 107(6):1095-1112.e6. PubMed ID: 32697942
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A theory of joint attractor dynamics in the hippocampus and the entorhinal cortex accounts for artificial remapping and grid cell field-to-field variability.
    Agmon H; Burak Y
    Elife; 2020 Aug; 9():. PubMed ID: 32779570
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Influence of boundary removal on the spatial representations of the medial entorhinal cortex.
    Savelli F; Yoganarasimha D; Knierim JJ
    Hippocampus; 2008; 18(12):1270-82. PubMed ID: 19021262
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Grid and Nongrid Cells in Medial Entorhinal Cortex Represent Spatial Location and Environmental Features with Complementary Coding Schemes.
    Diehl GW; Hon OJ; Leutgeb S; Leutgeb JK
    Neuron; 2017 Apr; 94(1):83-92.e6. PubMed ID: 28343867
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Modular realignment of entorhinal grid cell activity as a basis for hippocampal remapping.
    Monaco JD; Abbott LF
    J Neurosci; 2011 Jun; 31(25):9414-25. PubMed ID: 21697391
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Time Cells in the Hippocampus Are Neither Dependent on Medial Entorhinal Cortex Inputs nor Necessary for Spatial Working Memory.
    Sabariego M; Schönwald A; Boublil BL; Zimmerman DT; Ahmadi S; Gonzalez N; Leibold C; Clark RE; Leutgeb JK; Leutgeb S
    Neuron; 2019 Jun; 102(6):1235-1248.e5. PubMed ID: 31056352
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Functional connectivity of the entorhinal-hippocampal space circuit.
    Zhang SJ; Ye J; Couey JJ; Witter M; Moser EI; Moser MB
    Philos Trans R Soc Lond B Biol Sci; 2014 Feb; 369(1635):20120516. PubMed ID: 24366130
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Object and object-memory representations across the proximodistal axis of CA1.
    Vandrey B; Duncan S; Ainge JA
    Hippocampus; 2021 Aug; 31(8):881-896. PubMed ID: 33942429
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The hippocampus converts dynamic entorhinal inputs into stable spatial maps.
    Cholvin T; Hainmueller T; Bartos M
    Neuron; 2021 Oct; 109(19):3135-3148.e7. PubMed ID: 34619088
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Transient optogenetic inactivation of the medial entorhinal cortex biases the active population of hippocampal neurons.
    Rueckemann JW; DiMauro AJ; Rangel LM; Han X; Boyden ES; Eichenbaum H
    Hippocampus; 2016 Feb; 26(2):246-60. PubMed ID: 26299904
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Medial entorhinal cortex lesions only partially disrupt hippocampal place cells and hippocampus-dependent place memory.
    Hales JB; Schlesiger MI; Leutgeb JK; Squire LR; Leutgeb S; Clark RE
    Cell Rep; 2014 Nov; 9(3):893-901. PubMed ID: 25437546
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Learning an Efficient Hippocampal Place Map from Entorhinal Inputs Using Non-Negative Sparse Coding.
    Lian Y; Burkitt AN
    eNeuro; 2021; 8(4):. PubMed ID: 34162691
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.