These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

441 related articles for article (PubMed ID: 29562237)

  • 41. Pathway engineering for the production of heterologous aromatic chemicals and their derivatives in Saccharomyces cerevisiae: bioconversion from glucose.
    Gottardi M; Reifenrath M; Boles E; Tripp J
    FEMS Yeast Res; 2017 Jun; 17(4):. PubMed ID: 28582489
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Production of fuels and chemicals from xylose by engineered Saccharomyces cerevisiae: a review and perspective.
    Kwak S; Jin YS
    Microb Cell Fact; 2017 May; 16(1):82. PubMed ID: 28494761
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Directed evolution of a highly efficient cellobiose utilizing pathway in an industrial Saccharomyces cerevisiae strain.
    Yuan Y; Zhao H
    Biotechnol Bioeng; 2013 Nov; 110(11):2874-81. PubMed ID: 23616289
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Engineering Clostridium acetobutylicum for alcohol production.
    Hou X; Peng W; Xiong L; Huang C; Chen X; Chen X; Zhang W
    J Biotechnol; 2013 Jun; 166(1-2):25-33. PubMed ID: 23651949
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Uncovering the role of branched-chain amino acid transaminases in Saccharomyces cerevisiae isobutanol biosynthesis.
    Hammer SK; Avalos JL
    Metab Eng; 2017 Nov; 44():302-312. PubMed ID: 29037781
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Compartmentalization of metabolic pathways in yeast mitochondria improves the production of branched-chain alcohols.
    Avalos JL; Fink GR; Stephanopoulos G
    Nat Biotechnol; 2013 Apr; 31(4):335-41. PubMed ID: 23417095
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Biosensor for branched-chain amino acid metabolism in yeast and applications in isobutanol and isopentanol production.
    Zhang Y; Cortez JD; Hammer SK; Carrasco-López C; García Echauri SÁ; Wiggins JB; Wang W; Avalos JL
    Nat Commun; 2022 Jan; 13(1):270. PubMed ID: 35022416
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Enhanced butanol fermentation using metabolically engineered Clostridium acetobutylicum with ex situ recovery of butanol.
    Lee SH; Kim S; Kim JY; Cheong NY; Kim KH
    Bioresour Technol; 2016 Oct; 218():909-17. PubMed ID: 27441828
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Combining C6 and C5 sugar metabolism for enhancing microbial bioconversion.
    Zhang GC; Liu JJ; Kong II; Kwak S; Jin YS
    Curr Opin Chem Biol; 2015 Dec; 29():49-57. PubMed ID: 26432418
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Genetic engineering to alter carbon flux for various higher alcohol productions by Saccharomyces cerevisiae for Chinese Baijiu fermentation.
    Li W; Chen SJ; Wang JH; Zhang CY; Shi Y; Guo XW; Chen YF; Xiao DG
    Appl Microbiol Biotechnol; 2018 Feb; 102(4):1783-1795. PubMed ID: 29305698
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Critical Roles of the Pentose Phosphate Pathway and GLN3 in Isobutanol-Specific Tolerance in Yeast.
    Kuroda K; Hammer SK; Watanabe Y; Montaño López J; Fink GR; Stephanopoulos G; Ueda M; Avalos JL
    Cell Syst; 2019 Dec; 9(6):534-547.e5. PubMed ID: 31734159
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Repeated-batch fermentations of xylose and glucose-xylose mixtures using a respiration-deficient Saccharomyces cerevisiae engineered for xylose metabolism.
    Kim SR; Lee KS; Choi JH; Ha SJ; Kweon DH; Seo JH; Jin YS
    J Biotechnol; 2010 Nov; 150(3):404-7. PubMed ID: 20933550
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Microbial production of a biofuel (acetone-butanol-ethanol) in a continuous bioreactor: impact of bleed and simultaneous product removal.
    Ezeji TC; Qureshi N; Blaschek HP
    Bioprocess Biosyst Eng; 2013 Jan; 36(1):109-16. PubMed ID: 22729675
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Fungal Light-Oxygen-Voltage Domains for Optogenetic Control of Gene Expression and Flocculation in Yeast.
    Salinas F; Rojas V; Delgado V; López J; Agosin E; Larrondo LF
    mBio; 2018 Jul; 9(4):. PubMed ID: 30065085
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Metabolic engineering of Saccharomyces cerevisiae for production of spermidine under optimal culture conditions.
    Kim SK; Jo JH; Park YC; Jin YS; Seo JH
    Enzyme Microb Technol; 2017 Jun; 101():30-35. PubMed ID: 28433188
    [TBL] [Abstract][Full Text] [Related]  

  • 56. The rise and shine of yeast optogenetics.
    Figueroa D; Rojas V; Romero A; Larrondo LF; Salinas F
    Yeast; 2021 Feb; 38(2):131-146. PubMed ID: 33119964
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Enhanced butanol production by eukaryotic Saccharomyces cerevisiae engineered to contain an improved pathway.
    Sakuragi H; Morisaka H; Kuroda K; Ueda M
    Biosci Biotechnol Biochem; 2015; 79(2):314-20. PubMed ID: 25348391
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Toward "homolactic" fermentation of glucose and xylose by engineered Saccharomyces cerevisiae harboring a kinetically efficient l-lactate dehydrogenase within pdc1-pdc5 deletion background.
    Novy V; Brunner B; Müller G; Nidetzky B
    Biotechnol Bioeng; 2017 Jan; 114(1):163-171. PubMed ID: 27426989
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Secretion of 2,3-dihydroxyisovalerate as a limiting factor for isobutanol production in Saccharomyces cerevisiae.
    Generoso WC; Brinek M; Dietz H; Oreb M; Boles E
    FEMS Yeast Res; 2017 May; 17(3):. PubMed ID: 28505306
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Prospective and development of butanol as an advanced biofuel.
    Xue C; Zhao XQ; Liu CG; Chen LJ; Bai FW
    Biotechnol Adv; 2013 Dec; 31(8):1575-84. PubMed ID: 23993946
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 23.