These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
195 related articles for article (PubMed ID: 29562302)
1. Effective reduction of cadmium accumulation in rice grain by expressing OsHMA3 under the control of the OsHMA2 promoter. Shao JF; Xia J; Yamaji N; Shen RF; Ma JF J Exp Bot; 2018 Apr; 69(10):2743-2752. PubMed ID: 29562302 [TBL] [Abstract][Full Text] [Related]
2. Producing cadmium-free Indica rice by overexpressing OsHMA3. Lu C; Zhang L; Tang Z; Huang XY; Ma JF; Zhao FJ Environ Int; 2019 May; 126():619-626. PubMed ID: 30856449 [TBL] [Abstract][Full Text] [Related]
3. Overexpression of OsHMA3 enhances Cd tolerance and expression of Zn transporter genes in rice. Sasaki A; Yamaji N; Ma JF J Exp Bot; 2014 Nov; 65(20):6013-21. PubMed ID: 25151617 [TBL] [Abstract][Full Text] [Related]
4. A loss-of-function allele of OsHMA3 associated with high cadmium accumulation in shoots and grain of Japonica rice cultivars. Yan J; Wang P; Wang P; Yang M; Lian X; Tang Z; Huang CF; Salt DE; Zhao FJ Plant Cell Environ; 2016 Sep; 39(9):1941-54. PubMed ID: 27038090 [TBL] [Abstract][Full Text] [Related]
5. Map-based cloning of a new total loss-of-function allele of OsHMA3 causes high cadmium accumulation in rice grain. Sui F; Zhao D; Zhu H; Gong Y; Tang Z; Huang XY; Zhang G; Zhao FJ J Exp Bot; 2019 May; 70(10):2857-2871. PubMed ID: 30840768 [TBL] [Abstract][Full Text] [Related]
6. Comprehensive analysis of variation of cadmium accumulation in rice and detection of a new weak allele of OsHMA3. Sun C; Yang M; Li Y; Tian J; Zhang Y; Liang L; Liu Z; Chen K; Li Y; Lv K; Lian X J Exp Bot; 2019 Nov; 70(21):6389-6400. PubMed ID: 31494666 [TBL] [Abstract][Full Text] [Related]
7. Natural variation in the promoter of OsHMA3 contributes to differential grain cadmium accumulation between Indica and Japonica rice. Liu CL; Gao ZY; Shang LG; Yang CH; Ruan BP; Zeng DL; Guo LB; Zhao FJ; Huang CF; Qian Q J Integr Plant Biol; 2020 Mar; 62(3):314-329. PubMed ID: 30791211 [TBL] [Abstract][Full Text] [Related]
8. Preferential delivery of zinc to developing tissues in rice is mediated by P-type heavy metal ATPase OsHMA2. Yamaji N; Xia J; Mitani-Ueno N; Yokosho K; Feng Ma J Plant Physiol; 2013 Jun; 162(2):927-39. PubMed ID: 23575418 [TBL] [Abstract][Full Text] [Related]
10. Mutations in rice (Oryza sativa) heavy metal ATPase 2 (OsHMA2) restrict the translocation of zinc and cadmium. Satoh-Nagasawa N; Mori M; Nakazawa N; Kawamoto T; Nagato Y; Sakurai K; Takahashi H; Watanabe A; Akagi H Plant Cell Physiol; 2012 Jan; 53(1):213-24. PubMed ID: 22123790 [TBL] [Abstract][Full Text] [Related]
11. The OsHMA2 transporter is involved in root-to-shoot translocation of Zn and Cd in rice. Takahashi R; Ishimaru Y; Shimo H; Ogo Y; Senoura T; Nishizawa NK; Nakanishi H Plant Cell Environ; 2012 Nov; 35(11):1948-57. PubMed ID: 22548273 [TBL] [Abstract][Full Text] [Related]
12. OsHMA3, a P1B-type of ATPase affects root-to-shoot cadmium translocation in rice by mediating efflux into vacuoles. Miyadate H; Adachi S; Hiraizumi A; Tezuka K; Nakazawa N; Kawamoto T; Katou K; Kodama I; Sakurai K; Takahashi H; Satoh-Nagasawa N; Watanabe A; Fujimura T; Akagi H New Phytol; 2011 Jan; 189(1):190-9. PubMed ID: 20840506 [TBL] [Abstract][Full Text] [Related]
13. Silicon reduces cadmium accumulation by suppressing expression of transporter genes involved in cadmium uptake and translocation in rice. Feng Shao J; Che J; Yamaji N; Fang Shen R; Feng Ma J J Exp Bot; 2017 Nov; 68(20):5641-5651. PubMed ID: 29045756 [TBL] [Abstract][Full Text] [Related]
14. Micro-XRF mapping and quantitative assessment of Cd in rice (Oryza sativa L.) roots. Tefera W; Liu T; Lu L; Ge J; Webb SM; Seifu W; Tian S Ecotoxicol Environ Saf; 2020 Apr; 193():110245. PubMed ID: 32092577 [TBL] [Abstract][Full Text] [Related]
15. Gene identification and transcriptome analysis of low cadmium accumulation rice mutant (lcd1) in response to cadmium stress using MutMap and RNA-seq. Cao ZZ; Lin XY; Yang YJ; Guan MY; Xu P; Chen MX BMC Plant Biol; 2019 Jun; 19(1):250. PubMed ID: 31185911 [TBL] [Abstract][Full Text] [Related]
16. The tonoplast-localized transporter OsHMA3 plays an important role in maintaining Zn homeostasis in rice. Cai H; Huang S; Che J; Yamaji N; Ma JF J Exp Bot; 2019 May; 70(10):2717-2725. PubMed ID: 30840766 [TBL] [Abstract][Full Text] [Related]
17. Physiological, genetic, and molecular characterization of a high-Cd-accumulating rice cultivar, Jarjan. Ueno D; Koyama E; Yamaji N; Ma JF J Exp Bot; 2011 Apr; 62(7):2265-72. PubMed ID: 21127026 [TBL] [Abstract][Full Text] [Related]
18. OsZIP7 functions in xylem loading in roots and inter-vascular transfer in nodes to deliver Zn/Cd to grain in rice. Tan L; Zhu Y; Fan T; Peng C; Wang J; Sun L; Chen C Biochem Biophys Res Commun; 2019 Apr; 512(1):112-118. PubMed ID: 30871778 [TBL] [Abstract][Full Text] [Related]
19. The ABC transporter ABCG36 is required for cadmium tolerance in rice. Fu S; Lu Y; Zhang X; Yang G; Chao D; Wang Z; Shi M; Chen J; Chao DY; Li R; Ma JF; Xia J J Exp Bot; 2019 Oct; 70(20):5909-5918. PubMed ID: 31328224 [TBL] [Abstract][Full Text] [Related]
20. The tonoplast-localized transporter OsABCC9 is involved in cadmium tolerance and accumulation in rice. Yang G; Fu S; Huang J; Li L; Long Y; Wei Q; Wang Z; Chen Z; Xia J Plant Sci; 2021 Jun; 307():110894. PubMed ID: 33902855 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]