BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

200 related articles for article (PubMed ID: 29562348)

  • 1. Efficient pathway enrichment and network analysis of GWAS summary data using GSA-SNP2.
    Yoon S; Nguyen HCT; Yoo YJ; Kim J; Baik B; Kim S; Kim J; Kim S; Nam D
    Nucleic Acids Res; 2018 Jun; 46(10):e60. PubMed ID: 29562348
    [TBL] [Abstract][Full Text] [Related]  

  • 2. GSA-SNP: a general approach for gene set analysis of polymorphisms.
    Nam D; Kim J; Kim SY; Kim S
    Nucleic Acids Res; 2010 Jul; 38(Web Server issue):W749-54. PubMed ID: 20501604
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Searching joint association signals in CATIE schizophrenia genome-wide association studies through a refined integrative network approach.
    Jia P; Zhao Z
    BMC Genomics; 2012; 13 Suppl 6(Suppl 6):S15. PubMed ID: 23134571
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Powerful gene set analysis in GWAS with the Generalized Berk-Jones statistic.
    Sun R; Hui S; Bader GD; Lin X; Kraft P
    PLoS Genet; 2019 Mar; 15(3):e1007530. PubMed ID: 30875371
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Pathway Analysis Incorporating Protein-Protein Interaction Networks Identified Candidate Pathways for the Seven Common Diseases.
    Lin PL; Yu YW; Chung RH
    PLoS One; 2016; 11(9):e0162910. PubMed ID: 27622767
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Genome-wide genetic analyses highlight mitogen-activated protein kinase (MAPK) signaling in the pathogenesis of endometriosis.
    Uimari O; Rahmioglu N; Nyholt DR; Vincent K; Missmer SA; Becker C; Morris AP; Montgomery GW; Zondervan KT
    Hum Reprod; 2017 Apr; 32(4):780-793. PubMed ID: 28333195
    [TBL] [Abstract][Full Text] [Related]  

  • 7. gsGator: an integrated web platform for cross-species gene set analysis.
    Kang H; Choi I; Cho S; Ryu D; Lee S; Kim W
    BMC Bioinformatics; 2014 Jan; 15():13. PubMed ID: 24423189
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Computational analyses of type 2 diabetes-associated loci identified by genome-wide association studies.
    Cheng M; Liu X; Yang M; Han L; Xu A; Huang Q
    J Diabetes; 2017 Apr; 9(4):362-377. PubMed ID: 27121852
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The SNP ratio test: pathway analysis of genome-wide association datasets.
    O'Dushlaine C; Kenny E; Heron EA; Segurado R; Gill M; Morris DW; Corvin A
    Bioinformatics; 2009 Oct; 25(20):2762-3. PubMed ID: 19620097
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Importance of SNP Dependency Correction and Association Integration for Gene Set Analysis in Genome-Wide Association Studies.
    Marczyk M; Macioszek A; Tobiasz J; Polanska J; Zyla J
    Front Genet; 2021; 12():767358. PubMed ID: 34956320
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Genome-wide meta-analysis of genetic susceptible genes for Type 2 Diabetes.
    Hale PJ; López-Yunez AM; Chen JY
    BMC Syst Biol; 2012; 6 Suppl 3(Suppl 3):S16. PubMed ID: 23281828
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Finding type 2 diabetes causal single nucleotide polymorphism combinations and functional modules from genome-wide association data.
    Kang C; Yu H; Yi GS
    BMC Med Inform Decis Mak; 2013; 13 Suppl 1(Suppl 1):S3. PubMed ID: 23566118
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Efficient and Powerful Method for Combining P-Values in Genome-Wide Association Studies.
    Vilor-Tejedor N; Gonzalez JR; Calle ML
    IEEE/ACM Trans Comput Biol Bioinform; 2016 Nov; 13(6):1100-1106. PubMed ID: 28055892
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Epistasis network centrality analysis yields pathway replication across two GWAS cohorts for bipolar disorder.
    Pandey A; Davis NA; White BC; Pajewski NM; Savitz J; Drevets WC; McKinney BA
    Transl Psychiatry; 2012 Aug; 2(8):e154. PubMed ID: 22892719
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fast and Rigorous Computation of Gene and Pathway Scores from SNP-Based Summary Statistics.
    Lamparter D; Marbach D; Rueedi R; Kutalik Z; Bergmann S
    PLoS Comput Biol; 2016 Jan; 12(1):e1004714. PubMed ID: 26808494
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Leveraging multiple gene networks to prioritize GWAS candidate genes via network representation learning.
    Wu M; Zeng W; Liu W; Lv H; Chen T; Jiang R
    Methods; 2018 Aug; 145():41-50. PubMed ID: 29874547
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Protein-protein interaction network-based integration of GWAS and functional data for blood pressure regulation analysis.
    Tsare EG; Klapa MI; Moschonas NK
    Hum Genomics; 2024 Feb; 18(1):15. PubMed ID: 38326862
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparison of pathway analysis approaches using lung cancer GWAS data sets.
    Fehringer G; Liu G; Briollais L; Brennan P; Amos CI; Spitz MR; Bickeböller H; Wichmann HE; Risch A; Hung RJ
    PLoS One; 2012; 7(2):e31816. PubMed ID: 22363742
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Gene, pathway and network frameworks to identify epistatic interactions of single nucleotide polymorphisms derived from GWAS data.
    Liu Y; Maxwell S; Feng T; Zhu X; Elston RC; Koyutürk M; Chance MR
    BMC Syst Biol; 2012; 6 Suppl 3(Suppl 3):S15. PubMed ID: 23281810
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Protein-interaction-network-based analysis for genome-wide association analysis of schizophrenia in Han Chinese population.
    Yu H; Bi W; Liu C; Zhao Y; Zhang JF; Zhang D; Yue W
    J Psychiatr Res; 2014 Mar; 50():73-8. PubMed ID: 24365204
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.