These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 29562573)

  • 1. Markov random field segmentation for industrial computed tomography with metal artefacts.
    Jaiswal A; Williams MA; Bhalerao A; Tiwari MK; Warnett JM
    J Xray Sci Technol; 2018; 26(4):573-591. PubMed ID: 29562573
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Development and validation of segmentation and interpolation techniques in sinograms for metal artifact suppression in CT.
    Veldkamp WJ; Joemai RM; van der Molen AJ; Geleijns J
    Med Phys; 2010 Feb; 37(2):620-8. PubMed ID: 20229871
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A virtual sinogram method to reduce dental metallic implant artefacts in computed tomography-based attenuation correction for PET.
    Abdoli M; Ay MR; Ahmadian A; Zaidi H
    Nucl Med Commun; 2010 Jan; 31(1):22-31. PubMed ID: 19829166
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Semi-supervised segmentation of metal-artifact contaminated industrial CT images using improved CycleGAN.
    Jiang SB; Sun YW; Xu S; Zhang HX; Wu ZF
    J Xray Sci Technol; 2024; 32(2):271-283. PubMed ID: 38217629
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A segmentation of brain MRI images utilizing intensity and contextual information by Markov random field.
    Chen M; Yan Q; Qin M
    Comput Assist Surg (Abingdon); 2017 Dec; 22(sup1):200-211. PubMed ID: 29072503
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dual-energy-based metal segmentation for metal artifact reduction in dental computed tomography.
    Hegazy MAA; Eldib ME; Hernandez D; Cho MH; Cho MH; Lee SY
    Med Phys; 2018 Feb; 45(2):714-724. PubMed ID: 29220087
    [TBL] [Abstract][Full Text] [Related]  

  • 7. CT image crack segmentation method based on linear feature enhancement.
    Zhang ZB; Zou YN; Huang YL; Li Q
    J Xray Sci Technol; 2022; 30(5):903-917. PubMed ID: 35723166
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Reduction of metallic coil artefacts in computed tomography body imaging: effects of a new single-energy metal artefact reduction algorithm.
    Kidoh M; Utsunomiya D; Ikeda O; Tamura Y; Oda S; Funama Y; Yuki H; Nakaura T; Kawano T; Hirai T; Yamashita Y
    Eur Radiol; 2016 May; 26(5):1378-86. PubMed ID: 26271621
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Truncation compensation and metallic dental implant artefact reduction in PET/MRI attenuation correction using deep learning-based object completion.
    Arabi H; Zaidi H
    Phys Med Biol; 2020 Sep; 65(19):195002. PubMed ID: 32976116
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A Novel Method for Segmentation-Based Semiautomatic Quantitative Evaluation of Metal Artifact Reduction Algorithms.
    Do TD; Sommer CM; Melzig C; Nattenmüller J; Vollherbst D; Kauczor HU; Stiller W; Skornitzke S
    Invest Radiol; 2019 Jun; 54(6):365-373. PubMed ID: 31048632
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Segmentation of small ground glass opacity pulmonary nodules based on Markov random field energy and Bayesian probability difference.
    Zhang S; Chen X; Zhu Z; Feng B; Chen Y; Long W
    Biomed Eng Online; 2020 Jun; 19(1):51. PubMed ID: 32552724
    [TBL] [Abstract][Full Text] [Related]  

  • 12. X-ray CT high-density artefact suppression in the presence of bones.
    Wei J; Chen L; Sandison GA; Liang Y; Xu LX
    Phys Med Biol; 2004 Dec; 49(24):5407-18. PubMed ID: 15724532
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An efficient MRF embedded level set method for image segmentation.
    Yang X; Gao X; Tao D; Li X; Li J
    IEEE Trans Image Process; 2015 Jan; 24(1):9-21. PubMed ID: 25420261
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Segmentation of artifacts and anatomy in CT metal artifact reduction.
    Karimi S; Cosman P; Wald C; Martz H
    Med Phys; 2012 Oct; 39(10):5857-68. PubMed ID: 23039624
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Measuring femoral lesions despite CT metal artefacts: a cadaveric study.
    Malan DF; Botha CP; Kraaij G; Joemai RM; van der Heide HJ; Nelissen RG; Valstar ER
    Skeletal Radiol; 2012 May; 41(5):547-55. PubMed ID: 21732221
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparative performance assessment of beam hardening correction algorithms applied on simulated data sets.
    Cao W; Sun T; Fardell G; Price B; Dewulf W
    J Microsc; 2018 Dec; 272(3):229-241. PubMed ID: 30088275
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An explicit shape-constrained MRF-based contour evolution method for 2-D medical image segmentation.
    Chittajallu DR; Paragios N; Kakadiaris IA
    IEEE J Biomed Health Inform; 2014 Jan; 18(1):120-9. PubMed ID: 24403409
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Metal Artifact Reduction in X-ray Computed Tomography Using Computer-Aided Design Data of Implants as Prior Information.
    Ruth V; Kolditz D; Steiding C; Kalender WA
    Invest Radiol; 2017 Jun; 52(6):349-359. PubMed ID: 28106615
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A prior-based metal artifact reduction algorithm for x-ray CT.
    Li M; Zheng J; Zhang T; Guan Y; Xu P; Sun M
    J Xray Sci Technol; 2015; 23(2):229-41. PubMed ID: 25882733
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Metal artifact reduction and image quality evaluation of lumbar spine CT images using metal sinogram segmentation.
    Kaewlek T; Koolpiruck D; Thongvigitmanee S; Mongkolsuk M; Thammakittiphan S; Tritrakarn SO; Chiewvit P
    J Xray Sci Technol; 2015; 23(6):649-66. PubMed ID: 26756404
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.