These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

620 related articles for article (PubMed ID: 29562647)

  • 1. Individual versus Combinatorial Effects of Silicon, Phosphate, and Iron Deficiency on the Growth of Lowland and Upland Rice Varieties.
    Chaiwong N; Prom-U-Thai C; Bouain N; Lacombe B; Rouached H
    Int J Mol Sci; 2018 Mar; 19(3):. PubMed ID: 29562647
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Phosphorus and Iron Deficiencies Influences Rice Shoot Growth in an Oxygen Dependent Manner: Insight from Upland and Lowland Rice.
    Mongon J; Chaiwong N; Bouain N; Prom-U-Thai C; Secco D; Rouached H
    Int J Mol Sci; 2017 Mar; 18(3):. PubMed ID: 28287426
    [TBL] [Abstract][Full Text] [Related]  

  • 3. High Silicon Accumulation in the Shoot is Required for Down-Regulating the Expression of Si Transporter Genes in Rice.
    Mitani-Ueno N; Yamaji N; Ma JF
    Plant Cell Physiol; 2016 Dec; 57(12):2510-2518. PubMed ID: 27742884
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Silicon induced Fe deficiency affects Fe, Mn, Cu and Zn distribution in rice (Oryza sativa L.) growth in calcareous conditions.
    Carrasco-Gil S; Rodríguez-Menéndez S; Fernández B; Pereiro R; de la Fuente V; Hernandez-Apaolaza L
    Plant Physiol Biochem; 2018 Apr; 125():153-163. PubMed ID: 29453092
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Rice OsMYB5P improves plant phosphate acquisition by regulation of phosphate transporter.
    Yang WT; Baek D; Yun DJ; Lee KS; Hong SY; Bae KD; Chung YS; Kwon YS; Kim DH; Jung KH; Kim DH
    PLoS One; 2018; 13(3):e0194628. PubMed ID: 29566032
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Molecular interaction between PHO2 and GIGANTEA reveals a new crosstalk between flowering time and phosphate homeostasis in Oryza sativa.
    Li S; Ying Y; Secco D; Wang C; Narsai R; Whelan J; Shou H
    Plant Cell Environ; 2017 Aug; 40(8):1487-1499. PubMed ID: 28337762
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Interplay Between Silicon and Iron Signaling Pathways to Regulate Silicon Transporter
    Chaiwong N; Bouain N; Prom-U-Thai C; Rouached H
    Front Plant Sci; 2020; 11():1065. PubMed ID: 32793256
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Iron and callose homeostatic regulation in rice roots under low phosphorus.
    Ding Y; Wang Z; Ren M; Zhang P; Li Z; Chen S; Ge C; Wang Y
    BMC Plant Biol; 2018 Dec; 18(1):326. PubMed ID: 30514218
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Integrative Comparison of the Role of the PHOSPHATE RESPONSE1 Subfamily in Phosphate Signaling and Homeostasis in Rice.
    Guo M; Ruan W; Li C; Huang F; Zeng M; Liu Y; Yu Y; Ding X; Wu Y; Wu Z; Mao C; Yi K; Wu P; Mo X
    Plant Physiol; 2015 Aug; 168(4):1762-76. PubMed ID: 26082401
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Silicon reduces the iron uptake in rice and induces iron homeostasis related genes.
    Becker M; Ngo NS; Schenk MKA
    Sci Rep; 2020 Mar; 10(1):5079. PubMed ID: 32193423
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Silicon decreases both uptake and root-to-shoot translocation of manganese in rice.
    Che J; Yamaji N; Shao JF; Ma JF; Shen RF
    J Exp Bot; 2016 Mar; 67(5):1535-44. PubMed ID: 26733690
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ecophysiological responses to excess iron in lowland and upland rice cultivars.
    Müller C; Silveira SFDS; Daloso DM; Mendes GC; Merchant A; Kuki KN; Oliva MA; Loureiro ME; Almeida AM
    Chemosphere; 2017 Dec; 189():123-133. PubMed ID: 28934652
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Discovery of new genetic determinants of morphological plasticity in rice roots and shoots under phosphate starvation using GWAS.
    Mai NTP; Mai CD; Nguyen HV; Le KQ; Duong LV; Tran TA; To HTM
    J Plant Physiol; 2021 Feb; 257():153340. PubMed ID: 33388665
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A Small GTPase, OsRab6a, is Involved in the Regulation of Iron Homeostasis in Rice.
    Yang A; Zhang WH
    Plant Cell Physiol; 2016 Jun; 57(6):1271-80. PubMed ID: 27257291
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The Involvement of OsPHO1;1 in the Regulation of Iron Transport Through Integration of Phosphate and Zinc Deficiency Signaling.
    Saenchai C; Bouain N; Kisko M; Prom-U-Thai C; Doumas P; Rouached H
    Front Plant Sci; 2016; 7():396. PubMed ID: 27092147
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Silicon regulates phosphate deficiency through involvement of auxin and nitric oxide in barley roots.
    Kandhol N; Rai P; Mishra V; Pandey S; Kumar S; Deshmukh R; Sharma S; Singh VP; Tripathi DK
    Planta; 2024 May; 259(6):144. PubMed ID: 38709333
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Root transcriptome of two contrasting indica rice cultivars uncovers regulators of root development and physiological responses.
    Singh A; Kumar P; Gautam V; Rengasamy B; Adhikari B; Udayakumar M; Sarkar AK
    Sci Rep; 2016 Dec; 6():39266. PubMed ID: 28000793
    [TBL] [Abstract][Full Text] [Related]  

  • 18. OsSPX1 suppresses the function of OsPHR2 in the regulation of expression of OsPT2 and phosphate homeostasis in shoots of rice.
    Liu F; Wang Z; Ren H; Shen C; Li Y; Ling HQ; Wu C; Lian X; Wu P
    Plant J; 2010 May; 62(3):508-17. PubMed ID: 20149131
    [TBL] [Abstract][Full Text] [Related]  

  • 19. OsSIZ1, a SUMO E3 Ligase Gene, is Involved in the Regulation of the Responses to Phosphate and Nitrogen in Rice.
    Wang H; Sun R; Cao Y; Pei W; Sun Y; Zhou H; Wu X; Zhang F; Luo L; Shen Q; Xu G; Sun S
    Plant Cell Physiol; 2015 Dec; 56(12):2381-95. PubMed ID: 26615033
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Silicon alleviates drought stress of rice plants by improving plant water status, photosynthesis and mineral nutrient absorption.
    Chen W; Yao X; Cai K; Chen J
    Biol Trace Elem Res; 2011 Jul; 142(1):67-76. PubMed ID: 20532668
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 31.