BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

396 related articles for article (PubMed ID: 29562706)

  • 41. Expression of glutamine metabolism-related proteins according to molecular subtype of breast cancer.
    Kim S; Kim DH; Jung WH; Koo JS
    Endocr Relat Cancer; 2013 Jun; 20(3):339-48. PubMed ID: 23507704
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Amino Acid Transport Defects in Human Inherited Metabolic Disorders.
    Yahyaoui R; Pérez-Frías J
    Int J Mol Sci; 2019 Dec; 21(1):. PubMed ID: 31878022
    [TBL] [Abstract][Full Text] [Related]  

  • 43. The glutamine commute: lost in the tube?
    Conti F; Melone M
    Neurochem Int; 2006; 48(6-7):459-64. PubMed ID: 16517023
    [TBL] [Abstract][Full Text] [Related]  

  • 44. [Glutamine transport in the central nervous system].
    Sidoryk M
    Postepy Biochem; 2004; 50(4):363-70. PubMed ID: 15957531
    [No Abstract]   [Full Text] [Related]  

  • 45. Cross-talk between ER and HER2 regulates c-MYC-mediated glutamine metabolism in aromatase inhibitor resistant breast cancer cells.
    Chen Z; Wang Y; Warden C; Chen S
    J Steroid Biochem Mol Biol; 2015 May; 149():118-27. PubMed ID: 25683269
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Transporters for amino acids in plant cells: some functions and many unknowns.
    Tegeder M
    Curr Opin Plant Biol; 2012 Jun; 15(3):315-21. PubMed ID: 22366488
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Metabolic and morphological differences between rapidly proliferating cancerous and normal breast epithelial cells.
    Meadows AL; Kong B; Berdichevsky M; Roy S; Rosiva R; Blanch HW; Clark DS
    Biotechnol Prog; 2008; 24(2):334-41. PubMed ID: 18307352
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Loss of function mutation of the Slc38a3 glutamine transporter reveals its critical role for amino acid metabolism in the liver, brain, and kidney.
    Chan K; Busque SM; Sailer M; Stoeger C; Bröer S; Daniel H; Rubio-Aliaga I; Wagner CA
    Pflugers Arch; 2016 Feb; 468(2):213-27. PubMed ID: 26490457
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Knockdown of circular RNA septin 9 inhibits the malignant progression of breast cancer by reducing the expression of solute carrier family 1 member 5 in a microRNA-149-5p-dependent manner.
    Wang J; Yang K; Cao J; Li L
    Bioengineered; 2021 Dec; 12(2):10624-10637. PubMed ID: 34738502
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Gain-of-function genetic screens in human cells identify SLC transporters overcoming environmental nutrient restrictions.
    Rebsamen M; Girardi E; Sedlyarov V; Scorzoni S; Papakostas K; Vollert M; Konecka J; Guertl B; Klavins K; Wiedmer T; Superti-Furga G
    Life Sci Alliance; 2022 Nov; 5(11):. PubMed ID: 36114003
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Amino Acid Starvation-Induced Glutamine Accumulation Enhances Pneumococcal Survival.
    Zhang C; Liu Y; An H; Wang X; Xu L; Deng H; Wu S; Zhang JR; Liu X
    mSphere; 2023 Jun; 8(3):e0062522. PubMed ID: 37017541
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Estradiol stimulates the biosynthetic pathways of breast cancer cells: detection by metabolic flux analysis.
    Forbes NS; Meadows AL; Clark DS; Blanch HW
    Metab Eng; 2006 Nov; 8(6):639-52. PubMed ID: 16904360
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Solute transporters and malignancy: establishing the role of uptake transporters in breast cancer and breast cancer metastasis.
    Sutherland R; Meeson A; Lowes S
    Cancer Metastasis Rev; 2020 Sep; 39(3):919-932. PubMed ID: 32388639
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Comprehensive review of amino acid transporters as therapeutic targets.
    Xia R; Peng HF; Zhang X; Zhang HS
    Int J Biol Macromol; 2024 Mar; 260(Pt 2):129646. PubMed ID: 38272411
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Yes-associated protein 1 and transcriptional coactivator with PDZ-binding motif activate the mammalian target of rapamycin complex 1 pathway by regulating amino acid transporters in hepatocellular carcinoma.
    Park YY; Sohn BH; Johnson RL; Kang MH; Kim SB; Shim JJ; Mangala LS; Kim JH; Yoo JE; Rodriguez-Aguayo C; Pradeep S; Hwang JE; Jang HJ; Lee HS; Rupaimoole R; Lopez-Berestein G; Jeong W; Park IS; Park YN; Sood AK; Mills GB; Lee JS
    Hepatology; 2016 Jan; 63(1):159-72. PubMed ID: 26389641
    [TBL] [Abstract][Full Text] [Related]  

  • 56. SLC38A5 promotes glutamine metabolism and inhibits cisplatin chemosensitivity in breast cancer.
    Shen X; Wang G; He H; Shang P; Yan B; Wang X; Shen W
    Breast Cancer; 2024 Jan; 31(1):96-104. PubMed ID: 37914960
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Deletion of Amino Acid Transporter ASCT2 (SLC1A5) Reveals an Essential Role for Transporters SNAT1 (SLC38A1) and SNAT2 (SLC38A2) to Sustain Glutaminolysis in Cancer Cells.
    Bröer A; Rahimi F; Bröer S
    J Biol Chem; 2016 Jun; 291(25):13194-205. PubMed ID: 27129276
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Glutamine breakdown in rapidly dividing cells: waste or investment?
    Aledo JC
    Bioessays; 2004 Jul; 26(7):778-85. PubMed ID: 15221859
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Metformin Treatment or PRODH/POX-Knock out Similarly Induces Apoptosis by Reprograming of Amino Acid Metabolism, TCA, Urea Cycle and Pentose Phosphate Pathway in MCF-7 Breast Cancer Cells.
    Huynh TYL; Oscilowska I; Sáiz J; Nizioł M; Baszanowska W; Barbas C; Palka J
    Biomolecules; 2021 Dec; 11(12):. PubMed ID: 34944532
    [TBL] [Abstract][Full Text] [Related]  

  • 60. LAT2 regulates glutamine-dependent mTOR activation to promote glycolysis and chemoresistance in pancreatic cancer.
    Feng M; Xiong G; Cao Z; Yang G; Zheng S; Qiu J; You L; Zheng L; Zhang T; Zhao Y
    J Exp Clin Cancer Res; 2018 Nov; 37(1):274. PubMed ID: 30419950
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 20.