BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

322 related articles for article (PubMed ID: 29563042)

  • 1. Exploring differentially expressed genes related to metabolism by RNA-Seq in goat liver after dexamethasone treatment.
    Chen Q; Hua C; Niu L; Geng Y; Cai L; Tao S; Ni Y; Zhao R
    Gene; 2018 Jun; 659():175-182. PubMed ID: 29563042
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dynamic transcriptomic analysis in hircine longissimus dorsi muscle from fetal to neonatal development stages.
    Zhan S; Zhao W; Song T; Dong Y; Guo J; Cao J; Zhong T; Wang L; Li L; Zhang H
    Funct Integr Genomics; 2018 Jan; 18(1):43-54. PubMed ID: 28993898
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A quantitative transcriptomic analysis of the physiological significance of mTOR signaling in goat fetal fibroblasts.
    Fu Y; Zheng X; Jia X; Binderiya U; Wang Y; Bao W; Bao L; Zhao K; Fu Y; Hao H; Wang Z
    BMC Genomics; 2016 Nov; 17(1):879. PubMed ID: 27821074
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Identification of differentially expressed long non-coding RNAs and messenger RNAs involved with muscle development in Dazu black goats through RNA sequencing.
    Huang CN; Liu CL; Zeng SQ; Liu CB; Si WJ; Yuan Y; Ren LX; He YM; Zhang WY; Zhang HY; Zeng Y; Han YG; Na RS; Ee GX; Huang YF
    Anim Biotechnol; 2023 Nov; 34(4):1305-1313. PubMed ID: 34985384
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Exploring differentially expressed genes in the ovaries of uniparous and multiparous goats using the RNA-Seq (Quantification) method.
    Ling YH; Xiang H; Li YS; Liu Y; Zhang YH; Zhang ZJ; Ding JP; Zhang XR
    Gene; 2014 Oct; 550(1):148-53. PubMed ID: 25106856
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Transcriptome analysis of the Capra hircus ovary.
    Zhao ZQ; Wang LJ; Sun XW; Zhang JJ; Zhao YJ; Na RS; Zhang JH
    PLoS One; 2015; 10(3):e0121586. PubMed ID: 25822507
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Chronic dexamethasone exposure markedly decreased the hepatic triglyceride accumulation in growing goats.
    Chen Q; Niu L; Hua C; Geng Y; Cai L; Tao S; Ni Y; Zhao R
    Gen Comp Endocrinol; 2018 Apr; 259():115-121. PubMed ID: 29155266
    [TBL] [Abstract][Full Text] [Related]  

  • 8. In vivo response of xanthosine on mammary gene expression of lactating Beetal goat.
    Choudhary RK; Choudhary S; Verma R
    Mol Biol Rep; 2018 Aug; 45(4):581-590. PubMed ID: 29804277
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Transcriptome analysis of the uniparous and multiparous goats ovaries.
    Wang LJ; Sun XW; Guo FY; Zhao YJ; Zhang JH; Zhao ZQ
    Reprod Domest Anim; 2016 Dec; 51(6):877-885. PubMed ID: 27644444
    [TBL] [Abstract][Full Text] [Related]  

  • 10. De novo transcriptome sequencing and analysis of Coccinella septempunctata L. in non-diapause, diapause and diapause-terminated states to identify diapause-associated genes.
    Qi X; Zhang L; Han Y; Ren X; Huang J; Chen H
    BMC Genomics; 2015 Dec; 16():1086. PubMed ID: 26689283
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Transcriptome analysis reveals novel insights in air-breathing magur catfish (Clarias magur) in response to high environmental ammonia.
    Banerjee B; Koner D; Hasan R; Bhattacharya S; Saha N
    Gene; 2019 Jun; 703():35-49. PubMed ID: 30953708
    [TBL] [Abstract][Full Text] [Related]  

  • 12. High-throughput transcriptome sequencing analysis provides preliminary insights into the biotransformation mechanism of Rhodopseudomonas palustris treated with alpha-rhamnetin-3-rhamnoside.
    Bi L; Guan CJ; Yang GE; Yang F; Yan HY; Li QS
    Microbiol Res; 2016 Apr; 185():1-12. PubMed ID: 26946373
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Transcriptome analysis of the mammary gland from GH transgenic goats during involution.
    Lin J; Bao ZK; Zhang Q; Hu WW; Yu QH; Yang Q
    Gene; 2015 Jul; 565(2):228-34. PubMed ID: 25865296
    [TBL] [Abstract][Full Text] [Related]  

  • 14. RNA-Seq transcriptomics and pathway analyses reveal potential regulatory genes and molecular mechanisms in high- and low-residual feed intake in Nordic dairy cattle.
    Salleh MS; Mazzoni G; Höglund JK; Olijhoek DW; Lund P; Løvendahl P; Kadarmideen HN
    BMC Genomics; 2017 Mar; 18(1):258. PubMed ID: 28340555
    [TBL] [Abstract][Full Text] [Related]  

  • 15. RNA-Sequencing for profiling goat milk transcriptome in colostrum and mature milk.
    Crisà A; Ferrè F; Chillemi G; Moioli B
    BMC Vet Res; 2016 Nov; 12(1):264. PubMed ID: 27884183
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Transcriptome signature of liver tissue with divergent mutton odour and flavour using RNA deep sequencing.
    Gunawan A; Jakaria ; Listyarini K; Furqon A; Sumantri C; Akter SH; Uddin MJ
    Gene; 2018 Nov; 676():86-94. PubMed ID: 29958950
    [TBL] [Abstract][Full Text] [Related]  

  • 17. RNA-sequencing reveals the metabolism regulation mechanism of sheep skeletal muscle under nutrition deprivation stress.
    Qin J; Guo LR; Li JL; Zhang FH; Zhao DP; Du R
    Animal; 2021 Jul; 15(7):100254. PubMed ID: 34090092
    [TBL] [Abstract][Full Text] [Related]  

  • 18. De novo transcriptome analysis in radish (Raphanus sativus L.) and identification of critical genes involved in bolting and flowering.
    Nie S; Li C; Xu L; Wang Y; Huang D; Muleke EM; Sun X; Xie Y; Liu L
    BMC Genomics; 2016 May; 17():389. PubMed ID: 27216755
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Global transcriptional profiling of longissimus thoracis muscle tissue in fetal and juvenile domestic goat using RNA sequencing.
    Wang YH; Zhang CL; Plath M; Fang XT; Lan XY; Zhou Y; Chen H
    Anim Genet; 2015 Dec; 46(6):655-65. PubMed ID: 26364974
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Identification of differentially expressed genes through RNA sequencing in goats (Capra hircus) at different postnatal stages.
    Lin Y; Zhu J; Wang Y; Li Q; Lin S
    PLoS One; 2017; 12(8):e0182602. PubMed ID: 28800357
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.