BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

178 related articles for article (PubMed ID: 29563497)

  • 1. Elementary steps in electrical doping of organic semiconductors.
    Tietze ML; Benduhn J; Pahner P; Nell B; Schwarze M; Kleemann H; Krammer M; Zojer K; Vandewal K; Leo K
    Nat Commun; 2018 Mar; 9(1):1182. PubMed ID: 29563497
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Molecular Electrical Doping of Organic Semiconductors: Fundamental Mechanisms and Emerging Dopant Design Rules.
    Salzmann I; Heimel G; Oehzelt M; Winkler S; Koch N
    Acc Chem Res; 2016 Mar; 49(3):370-8. PubMed ID: 26854611
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Molecular parameters responsible for thermally activated transport in doped organic semiconductors.
    Schwarze M; Gaul C; Scholz R; Bussolotti F; Hofacker A; Schellhammer KS; Nell B; Naab BD; Bao Z; Spoltore D; Vandewal K; Widmer J; Kera S; Ueno N; Ortmann F; Leo K
    Nat Mater; 2019 Mar; 18(3):242-248. PubMed ID: 30692647
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Exploring the energy landscape of the charge transport levels in organic semiconductors at the molecular scale.
    Cornil J; Verlaak S; Martinelli N; Mityashin A; Olivier Y; Van Regemorter T; D'Avino G; Muccioli L; Zannoni C; Castet F; Beljonne D; Heremans P
    Acc Chem Res; 2013 Feb; 46(2):434-43. PubMed ID: 23140088
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Disorder compensation controls doping efficiency in organic semiconductors.
    Fediai A; Symalla F; Friederich P; Wenzel W
    Nat Commun; 2019 Oct; 10(1):4547. PubMed ID: 31591405
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Universal Limit for Air-Stable Molecular n-Doping in Organic Semiconductors.
    Schwarze M; Tietze ML; Ortmann F; Kleemann H; Leo K
    ACS Appl Mater Interfaces; 2020 Sep; 12(36):40566-40571. PubMed ID: 32805922
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Charge transport in electrically doped amorphous organic semiconductors.
    Yoo SJ; Kim JJ
    Macromol Rapid Commun; 2015 Jun; 36(11):984-1000. PubMed ID: 25858625
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Organic Donor-Acceptor Complexes as Novel Organic Semiconductors.
    Zhang J; Xu W; Sheng P; Zhao G; Zhu D
    Acc Chem Res; 2017 Jul; 50(7):1654-1662. PubMed ID: 28608673
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Controlled electrical doping of organic semiconductors: a combined intra- and intermolecular perspective from first principles.
    Joo B; Kim EG
    Phys Chem Chem Phys; 2016 Jul; 18(27):17890-7. PubMed ID: 27314750
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Significantly Reduced Thermal-Activation Energy for Hole Transport via Simple Donor Engineering: Understanding the Role of Molecular Parameters for Thermoelectric Behaviors.
    Zhong F; Yin X; Chen Z; Gao C; Wang L
    ACS Appl Mater Interfaces; 2020 Jun; 12(23):26276-26285. PubMed ID: 32421324
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Doping-Induced Dielectric Catastrophe Prompts Free-Carrier Release in Organic Semiconductors.
    Comin M; Fratini S; Blase X; D'Avino G
    Adv Mater; 2022 Jan; 34(2):e2105376. PubMed ID: 34647372
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Controlling Molecular Doping in Organic Semiconductors.
    Jacobs IE; Moulé AJ
    Adv Mater; 2017 Nov; 29(42):. PubMed ID: 28921668
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Photoconversion Mechanism at the
    Lee JH; Perrot A; Hiramoto M; Izawa S
    Materials (Basel); 2020 Apr; 13(7):. PubMed ID: 32272671
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Charge-transfer crystallites as molecular electrical dopants.
    Méndez H; Heimel G; Winkler S; Frisch J; Opitz A; Sauer K; Wegner B; Oehzelt M; Röthel C; Duhm S; Többens D; Koch N; Salzmann I
    Nat Commun; 2015 Oct; 6():8560. PubMed ID: 26440403
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Disorder-driven doping activation in organic semiconductors.
    Fediai A; Emering A; Symalla F; Wenzel W
    Phys Chem Chem Phys; 2020 May; 22(18):10256-10264. PubMed ID: 32352139
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Energy level alignment at planar organic heterojunctions: influence of contact doping and molecular orientation.
    Opitz A
    J Phys Condens Matter; 2017 Apr; 29(13):133001. PubMed ID: 28195076
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Combination of Counterion Size and Doping Concentration Determines the Electronic and Thermoelectric Properties of Semiconducting Polymers.
    Baustert KN; Bombile JH; Rahman MT; Yusuf AO; Li R; Huckaba AJ; Risko C; Graham KR
    Adv Mater; 2024 Apr; ():e2313863. PubMed ID: 38687901
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Doping of organic semiconductors: impact of dopant strength and electronic coupling.
    Méndez H; Heimel G; Opitz A; Sauer K; Barkowski P; Oehzelt M; Soeda J; Okamoto T; Takeya J; Arlin JB; Balandier JY; Geerts Y; Koch N; Salzmann I
    Angew Chem Int Ed Engl; 2013 Jul; 52(30):7751-5. PubMed ID: 23784880
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Diversification of Device Platforms by Molecular Layers: Hybrid Sensing Platforms, Monolayer Doping, and Modeling.
    Yitzchaik S; Gutierrez R; Cuniberti G; Yerushalmi R
    Langmuir; 2018 Nov; 34(47):14103-14123. PubMed ID: 30253096
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Controlling energy levels and Fermi level en route to fully tailored energetics in organic semiconductors.
    Warren R; Privitera A; Kaienburg P; Lauritzen AE; Thimm O; Nelson J; Riede MK
    Nat Commun; 2019 Dec; 10(1):5538. PubMed ID: 31804495
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.