BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

243 related articles for article (PubMed ID: 29563501)

  • 1. Reactive-site-centric chemoproteomics identifies a distinct class of deubiquitinase enzymes.
    Hewings DS; Heideker J; Ma TP; AhYoung AP; El Oualid F; Amore A; Costakes GT; Kirchhofer D; Brasher B; Pillow T; Popovych N; Maurer T; Schwerdtfeger C; Forrest WF; Yu K; Flygare J; Bogyo M; Wertz IE
    Nat Commun; 2018 Mar; 9(1):1162. PubMed ID: 29563501
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Discovery and Characterization of ZUFSP/ZUP1, a Distinct Deubiquitinase Class Important for Genome Stability.
    Kwasna D; Abdul Rehman SA; Natarajan J; Matthews S; Madden R; De Cesare V; Weidlich S; Virdee S; Ahel I; Gibbs-Seymour I; Kulathu Y
    Mol Cell; 2018 Apr; 70(1):150-164.e6. PubMed ID: 29576527
    [TBL] [Abstract][Full Text] [Related]  

  • 3. ZUFSP Deubiquitylates K63-Linked Polyubiquitin Chains to Promote Genome Stability.
    Haahr P; Borgermann N; Guo X; Typas D; Achuthankutty D; Hoffmann S; Shearer R; Sixma TK; Mailand N
    Mol Cell; 2018 Apr; 70(1):165-174.e6. PubMed ID: 29576528
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A family of unconventional deubiquitinases with modular chain specificity determinants.
    Hermanns T; Pichlo C; Woiwode I; Klopffleisch K; Witting KF; Ovaa H; Baumann U; Hofmann K
    Nat Commun; 2018 Feb; 9(1):799. PubMed ID: 29476094
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An Eimeria acervulina OTU protease exhibits linkage-specific deubiquitinase activity.
    Wang P; Gong P; Wang W; Li J; Ai Y; Zhang X
    Parasitol Res; 2019 Jan; 118(1):47-55. PubMed ID: 30415394
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Molecular basis of Lys11-polyubiquitin specificity in the deubiquitinase Cezanne.
    Mevissen TET; Kulathu Y; Mulder MPC; Geurink PP; Maslen SL; Gersch M; Elliott PR; Burke JE; van Tol BDM; Akutsu M; Oualid FE; Kawasaki M; Freund SMV; Ovaa H; Komander D
    Nature; 2016 Oct; 538(7625):402-405. PubMed ID: 27732584
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Using Activity-Based Proteomics for the Quantification of Deubiquitinases in Animal Tissue.
    Nanduri B; Shack LA; Santelices J; Edelmann MJ
    Methods Mol Biol; 2023; 2591():45-57. PubMed ID: 36350542
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A structural basis for the diverse linkage specificities within the ZUFSP deubiquitinase family.
    Hermanns T; Pichlo C; Baumann U; Hofmann K
    Nat Commun; 2022 Jan; 13(1):401. PubMed ID: 35058438
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Activity-Based Probes Developed by Applying a Sequential Dehydroalanine Formation Strategy to Expressed Proteins Reveal a Potential α-Globin-Modulating Deubiquitinase.
    Meledin R; Mali SM; Kleifeld O; Brik A
    Angew Chem Int Ed Engl; 2018 May; 57(20):5645-5649. PubMed ID: 29527788
    [TBL] [Abstract][Full Text] [Related]  

  • 10. OTUD4 Is a Phospho-Activated K63 Deubiquitinase that Regulates MyD88-Dependent Signaling.
    Zhao Y; Mudge MC; Soll JM; Rodrigues RB; Byrum AK; Schwarzkopf EA; Bradstreet TR; Gygi SP; Edelson BT; Mosammaparast N
    Mol Cell; 2018 Feb; 69(3):505-516.e5. PubMed ID: 29395066
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A unique deubiquitinase that deconjugates phosphoribosyl-linked protein ubiquitination.
    Qiu J; Yu K; Fei X; Liu Y; Nakayasu ES; Piehowski PD; Shaw JB; Puvar K; Das C; Liu X; Luo ZQ
    Cell Res; 2017 Jul; 27(7):865-881. PubMed ID: 28497808
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Activity-based probes for the ubiquitin conjugation-deconjugation machinery: new chemistries, new tools, and new insights.
    Hewings DS; Flygare JA; Bogyo M; Wertz IE
    FEBS J; 2017 May; 284(10):1555-1576. PubMed ID: 28196299
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Chemical Synthesis of Activity-Based Diubiquitin Probes.
    Li G; Yuan L; Zhuang Z
    Methods Mol Biol; 2017; 1513():223-232. PubMed ID: 27807841
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Release of Enzymatically Active Deubiquitinating Enzymes upon Reversible Capture by Disulfide Ubiquitin Reagents.
    de Jong A; Witting K; Kooij R; Flierman D; Ovaa H
    Angew Chem Int Ed Engl; 2017 Oct; 56(42):12967-12970. PubMed ID: 28841265
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Identification of active deubiquitinases in the chicken tissues.
    Nanduri B; Gresham CR; Jones G; Bailey RH; Edelmann MJ
    Proteomics; 2022 Jan; 22(1-2):e2100122. PubMed ID: 34643985
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Regulating the Master Regulator: Controlling Ubiquitination by Thinking Outside the Active Site.
    Paiva SL; da Silva SR; de Araujo ED; Gunning PT
    J Med Chem; 2018 Jan; 61(2):405-421. PubMed ID: 28076680
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Reprogramming a Deubiquitinase into a Transamidase.
    Chang LH; Strieter ER
    ACS Chem Biol; 2018 Sep; 13(9):2808-2818. PubMed ID: 30137960
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Chemical and semisynthetic approaches to study and target deubiquitinases.
    Gopinath P; Ohayon S; Nawatha M; Brik A
    Chem Soc Rev; 2016 Jul; 45(15):4171-98. PubMed ID: 27049734
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Regulation of Deubiquitinating Enzymes by Post-Translational Modifications.
    Das T; Shin SC; Song EJ; Kim EE
    Int J Mol Sci; 2020 Jun; 21(11):. PubMed ID: 32512887
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Palladium prompted on-demand cysteine chemistry for the synthesis of challenging and uniquely modified proteins.
    Jbara M; Laps S; Morgan M; Kamnesky G; Mann G; Wolberger C; Brik A
    Nat Commun; 2018 Aug; 9(1):3154. PubMed ID: 30089783
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.