These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

319 related articles for article (PubMed ID: 29563565)

  • 61. Mutations in domain I interhelical loops affect the rate of pore formation by the Bacillus thuringiensis Cry1Aa toxin in insect midgut brush border membrane vesicles.
    Lebel G; Vachon V; Préfontaine G; Girard F; Masson L; Juteau M; Bah A; Larouche G; Vincent C; Laprade R; Schwartz JL
    Appl Environ Microbiol; 2009 Jun; 75(12):3842-50. PubMed ID: 19376918
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Evidence for intermolecular interaction as a necessary step for pore-formation activity and toxicity of Bacillus thuringiensis Cry1Ab toxin.
    Soberón M; Pérez RV; Nuñez-Valdéz ME; Lorence A; Gómez I; Sánchez J; Bravo A
    FEMS Microbiol Lett; 2000 Oct; 191(2):221-5. PubMed ID: 11024267
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Enhancement of insect susceptibility and larvicidal efficacy of Cry4Ba toxin by calcofluor.
    Leetachewa S; Khomkhum N; Sakdee S; Wang P; Moonsom S
    Parasit Vectors; 2018 Sep; 11(1):515. PubMed ID: 30236155
    [TBL] [Abstract][Full Text] [Related]  

  • 64. N-acetylgalactosamine on the putative insect receptor aminopeptidase N is recognised by a site on the domain III lectin-like fold of a Bacillus thuringiensis insecticidal toxin.
    Burton SL; Ellar DJ; Li J; Derbyshire DJ
    J Mol Biol; 1999 Apr; 287(5):1011-22. PubMed ID: 10222207
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Engineering modified Bt toxins to counter insect resistance.
    Soberón M; Pardo-López L; López I; Gómez I; Tabashnik BE; Bravo A
    Science; 2007 Dec; 318(5856):1640-2. PubMed ID: 17975031
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Holotrichia oblita Midgut Proteins That Bind to Bacillus thuringiensis Cry8-Like Toxin and Assembly of the H. oblita Midgut Tissue Transcriptome.
    Jiang J; Huang Y; Shu C; Soberón M; Bravo A; Liu C; Song F; Lai J; Zhang J
    Appl Environ Microbiol; 2017 Jun; 83(12):. PubMed ID: 28389549
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Cloning and characterization of Manduca sexta and Plutella xylostella midgut aminopeptidase N enzymes related to Bacillus thuringiensis toxin-binding proteins.
    Denolf P; Hendrickx K; Van Damme J; Jansens S; Peferoen M; Degheele D; Van Rie J
    Eur J Biochem; 1997 Sep; 248(3):748-61. PubMed ID: 9342226
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Using phage display technology to obtain Crybodies active against non-target insects.
    Domínguez-Flores T; Romero-Bosquet MD; Gantiva-Díaz DM; Luque-Navas MJ; Berry C; Osuna A; Vílchez S
    Sci Rep; 2017 Nov; 7(1):14922. PubMed ID: 29097681
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Coexpression of cyt1Aa of Bacillus thuringiensis subsp. israelensis with Bacillus sphaericus binary toxin gene in acrystalliferous strain of B. thuringiensis.
    Li T; Sun F; Yuan Z; Zhang Y; Yu J; Pang Y
    Curr Microbiol; 2000 May; 40(5):322-6. PubMed ID: 10706663
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Loop residues of the receptor binding domain of Bacillus thuringiensis Cry11Ba toxin are important for mosquitocidal activity.
    Likitvivatanavong S; Aimanova KG; Gill SS
    FEBS Lett; 2009 Jun; 583(12):2021-30. PubMed ID: 19450583
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Docking-based generation of antibodies mimicking Cry1A/1B protein binding sites as potential insecticidal agents against diamondback moth (Plutella xylostella).
    Xie Y; Xu C; Gao M; Zhang X; Lu L; Hu X; Chen W; Jurat-Fuentes JL; Zhu Q; Liu Y; Lin M; Zhong J; Liu X
    Pest Manag Sci; 2021 Oct; 77(10):4593-4606. PubMed ID: 34092019
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Expressing a moth abcc2 gene in transgenic Drosophila causes susceptibility to Bt Cry1Ac without requiring a cadherin-like protein receptor.
    Stevens T; Song S; Bruning JB; Choo A; Baxter SW
    Insect Biochem Mol Biol; 2017 Jan; 80():61-70. PubMed ID: 27914919
    [TBL] [Abstract][Full Text] [Related]  

  • 73. GATAe transcription factor is involved in Bacillus thuringiensis Cry1Ac toxin receptor gene expression inducing toxin susceptibility.
    Wei W; Pan S; Ma Y; Xiao Y; Yang Y; He S; Bravo A; Soberón M; Liu K
    Insect Biochem Mol Biol; 2020 Mar; 118():103306. PubMed ID: 31843687
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Transcriptome and differentially expressed genes of Busseola fusca (Lepidoptera: Noctuidae) larvae challenged with Cry1Ab toxin.
    Peterson B; Sanko TJ; Bezuidenhout CC; van den Berg J
    Gene; 2019 Aug; 710():387-398. PubMed ID: 31136783
    [TBL] [Abstract][Full Text] [Related]  

  • 75. A high-throughput, in-vitro assay for Bacillus thuringiensis insecticidal proteins.
    Izumi Willcoxon M; Dennis JR; Lau SI; Xie W; You Y; Leng S; Fong RC; Yamamoto T
    J Biotechnol; 2016 Jan; 217():72-81. PubMed ID: 26524384
    [TBL] [Abstract][Full Text] [Related]  

  • 76. An alpha-amylase is a novel receptor for Bacillus thuringiensis ssp. israelensis Cry4Ba and Cry11Aa toxins in the malaria vector mosquito Anopheles albimanus (Diptera: Culicidae).
    Fernandez-Luna MT; Lanz-Mendoza H; Gill SS; Bravo A; Soberon M; Miranda-Rios J
    Environ Microbiol; 2010 Mar; 12(3):746-57. PubMed ID: 20002140
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Toxicity and mode of action of insecticidal Cry1A proteins from Bacillus thuringiensis in an insect cell line, CF-1.
    Portugal L; Gringorten JL; Caputo GF; Soberón M; Muñoz-Garay C; Bravo A
    Peptides; 2014 Mar; 53():292-9. PubMed ID: 24189038
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Insecticidal Specificity of Cry1Ah to Helicoverpa armigera Is Determined by Binding of APN1 via Domain II Loops 2 and 3.
    Zhou Z; Liu Y; Liang G; Huang Y; Bravo A; Soberón M; Song F; Zhou X; Zhang J
    Appl Environ Microbiol; 2017 Feb; 83(4):. PubMed ID: 27940541
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Bacillus thuringiensis subsp. israelensis and its dipteran-specific toxins.
    Ben-Dov E
    Toxins (Basel); 2014 Mar; 6(4):1222-43. PubMed ID: 24686769
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Redesigning Bacillus thuringiensis Cry1Aa toxin into a mosquito toxin.
    Liu XS; Dean DH
    Protein Eng Des Sel; 2006 Mar; 19(3):107-11. PubMed ID: 16436453
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 16.