These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
225 related articles for article (PubMed ID: 29563593)
1. Fatigue life of additively manufactured Ti6Al4V scaffolds under tension-tension, tension-compression and compression-compression fatigue load. Lietaert K; Cutolo A; Boey D; Van Hooreweder B Sci Rep; 2018 Mar; 8(1):4957. PubMed ID: 29563593 [TBL] [Abstract][Full Text] [Related]
2. Effects of applied stress ratio on the fatigue behavior of additively manufactured porous biomaterials under compressive loading. de Krijger J; Rans C; Van Hooreweder B; Lietaert K; Pouran B; Zadpoor AA J Mech Behav Biomed Mater; 2017 Jun; 70():7-16. PubMed ID: 27998687 [TBL] [Abstract][Full Text] [Related]
3. Fatigue crack propagation in additively manufactured porous biomaterials. Hedayati R; Amin Yavari S; Zadpoor AA Mater Sci Eng C Mater Biol Appl; 2017 Jul; 76():457-463. PubMed ID: 28482550 [TBL] [Abstract][Full Text] [Related]
4. Porous Ti6Al4V alloys with enhanced normalized fatigue strength for biomedical applications. Li F; Li J; Kou H; Zhou L Mater Sci Eng C Mater Biol Appl; 2016 Mar; 60():485-488. PubMed ID: 26706555 [TBL] [Abstract][Full Text] [Related]
5. Mechanical behavior of a titanium alloy scaffold mimicking trabecular structure. Zhang C; Zhang L; Liu L; Lv L; Gao L; Liu N; Wang X; Ye J J Orthop Surg Res; 2020 Feb; 15(1):40. PubMed ID: 32028970 [TBL] [Abstract][Full Text] [Related]
6. Improving the fatigue performance of porous metallic biomaterials produced by Selective Laser Melting. Van Hooreweder B; Apers Y; Lietaert K; Kruth JP Acta Biomater; 2017 Jan; 47():193-202. PubMed ID: 27717912 [TBL] [Abstract][Full Text] [Related]
7. Compression fatigue behavior of laser processed porous NiTi alloy. Bernard S; Krishna Balla V; Bose S; Bandyopadhyay A J Mech Behav Biomed Mater; 2012 Sep; 13():62-8. PubMed ID: 22842276 [TBL] [Abstract][Full Text] [Related]
9. Porous TiNbZr alloy scaffolds for biomedical applications. Wang X; Li Y; Xiong J; Hodgson PD; Wen C Acta Biomater; 2009 Nov; 5(9):3616-24. PubMed ID: 19505597 [TBL] [Abstract][Full Text] [Related]
10. From microstructural design to surface engineering: A tailored approach for improving fatigue life of additively manufactured meta-biomaterials. Ahmadi SM; Kumar R; Borisov EV; Petrov R; Leeflang S; Li Y; Tümer N; Huizenga R; Ayas C; Zadpoor AA; Popovich VA Acta Biomater; 2019 Jan; 83():153-166. PubMed ID: 30389577 [TBL] [Abstract][Full Text] [Related]
11. Numerical simulation of the fatigue behavior of additive manufactured titanium porous lattice structures. Zargarian A; Esfahanian M; Kadkhodapour J; Ziaei-Rad S Mater Sci Eng C Mater Biol Appl; 2016 Mar; 60():339-347. PubMed ID: 26706539 [TBL] [Abstract][Full Text] [Related]
12. Fatigue performance of additively manufactured meta-biomaterials: The effects of topology and material type. Ahmadi SM; Hedayati R; Li Y; Lietaert K; Tümer N; Fatemi A; Rans CD; Pouran B; Weinans H; Zadpoor AA Acta Biomater; 2018 Jan; 65():292-304. PubMed ID: 29127065 [TBL] [Abstract][Full Text] [Related]
13. Mechanical biocompatibilities of titanium alloys for biomedical applications. Niinomi M J Mech Behav Biomed Mater; 2008 Jan; 1(1):30-42. PubMed ID: 19627769 [TBL] [Abstract][Full Text] [Related]
14. Monotonic and cyclic loading behavior of porous scaffolds made from poly(para-phenylene) for orthopedic applications. Hoyt AJ; Yakacki CM; Fertig RS; Dana Carpenter R; Frick CP J Mech Behav Biomed Mater; 2015 Jan; 41():136-48. PubMed ID: 25460410 [TBL] [Abstract][Full Text] [Related]
15. Relationship between unit cell type and porosity and the fatigue behavior of selective laser melted meta-biomaterials. Amin Yavari S; Ahmadi SM; Wauthle R; Pouran B; Schrooten J; Weinans H; Zadpoor AA J Mech Behav Biomed Mater; 2015 Mar; 43():91-100. PubMed ID: 25579495 [TBL] [Abstract][Full Text] [Related]
16. Static and fatigue mechanical behavior of bone cement with elevated barium sulfate content for treatment of vertebral compression fractures. Kurtz SM; Villarraga ML; Zhao K; Edidin AA Biomaterials; 2005 Jun; 26(17):3699-712. PubMed ID: 15621260 [TBL] [Abstract][Full Text] [Related]
17. Finite element analysis on the biomechanical stability of open porous titanium scaffolds for large segmental bone defects under physiological load conditions. Wieding J; Souffrant R; Mittelmeier W; Bader R Med Eng Phys; 2013 Apr; 35(4):422-32. PubMed ID: 22809675 [TBL] [Abstract][Full Text] [Related]
18. Fatigue behavior of thin-walled grade 2 titanium samples processed by selective laser melting. Application to life prediction of porous titanium implants. Lipinski P; Barbas A; Bonnet AS J Mech Behav Biomed Mater; 2013 Dec; 28():274-90. PubMed ID: 24008139 [TBL] [Abstract][Full Text] [Related]
19. Improvement of the fatigue life of titanium alloys for biomedical devices through microstructural control. Niinomi M; Akahori T Expert Rev Med Devices; 2010 Jul; 7(4):481-8. PubMed ID: 20583885 [TBL] [Abstract][Full Text] [Related]
20. Effect of pore geometry on the fatigue properties and cell affinity of porous titanium scaffolds fabricated by selective laser melting. Zhao D; Huang Y; Ao Y; Han C; Wang Q; Li Y; Liu J; Wei Q; Zhang Z J Mech Behav Biomed Mater; 2018 Dec; 88():478-487. PubMed ID: 30223211 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]