BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

182 related articles for article (PubMed ID: 29564366)

  • 1. Phase-controlled, speckle-free holographic projection with applications in precision optogenetics.
    Aharoni T; Shoham S
    Neurophotonics; 2018 Apr; 5(2):025004. PubMed ID: 29564366
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Speckle-suppressed phase-only holographic three-dimensional display based on double-constraint Gerchberg-Saxton algorithm.
    Chang C; Xia J; Yang L; Lei W; Yang Z; Chen J
    Appl Opt; 2015 Aug; 54(23):6994-7001. PubMed ID: 26368366
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Holographic Optical Tweezers That Use an Improved Gerchberg-Saxton Algorithm.
    Zhou Z; Hu G; Zhao S; Li H; Zhang F
    Micromachines (Basel); 2023 May; 14(5):. PubMed ID: 37241637
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Holographic projection of arbitrary light patterns with a suppressed zero-order beam.
    Palima D; Daria VR
    Appl Opt; 2007 Jul; 46(20):4197-201. PubMed ID: 17579674
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Speckle reduced lensless holographic projection from phase-only computer-generated hologram.
    Chang C; Qi Y; Wu J; Xia J; Nie S
    Opt Express; 2017 Mar; 25(6):6568-6580. PubMed ID: 28381004
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Rapid tilted-plane Gerchberg-Saxton algorithm for holographic optical tweezers.
    Cai Y; Yan S; Wang Z; Li R; Liang Y; Zhou Y; Li X; Yu X; Lei M; Yao B
    Opt Express; 2020 Apr; 28(9):12729-12739. PubMed ID: 32403764
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Interactive application in holographic optical tweezers of a multi-plane Gerchberg-Saxton algorithm for three-dimensional light shaping.
    Sinclair G; Leach J; Jordan P; Gibson G; Yao E; Laczik Z; Padgett M; Courtial J
    Opt Express; 2004 Apr; 12(8):1665-70. PubMed ID: 19474992
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Second-harmonic computer-generated holographic imaging through monolithic lithium niobate crystal by femtosecond laser micromachining.
    Zhu B; Liu H; Liu Y; Yan X; Chen Y; Chen X
    Opt Lett; 2020 Aug; 45(15):4132-4135. PubMed ID: 32735241
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Reduction of two-photon holographic speckle using shift-averaging.
    Matar S; Golan L; Shoham S
    Opt Express; 2011 Dec; 19(27):25891-9. PubMed ID: 22274177
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Characterization of holographically generated beams via phase retrieval based on Wigner distribution projections.
    Rodrigo JA; Alieva T; Cámara A; Martínez-Matos O; Cheben P; Calvo ML
    Opt Express; 2011 Mar; 19(7):6064-77. PubMed ID: 21451630
    [TBL] [Abstract][Full Text] [Related]  

  • 11. High-axial-resolution speckle-free holographic reconstruction via cylindrical quadratic phase method and temporal focusing.
    Wang Y; Zheng Y; Li H; Gong W; Si K
    Opt Express; 2023 Nov; 31(24):40190-40201. PubMed ID: 38041325
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Random phase-free computer-generated hologram.
    Shimobaba T; Ito T
    Opt Express; 2015 Apr; 23(7):9549-54. PubMed ID: 25968783
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fast Calculation of Computer Generated Holograms for 3D Photostimulation through Compressive-Sensing Gerchberg-Saxton Algorithm.
    Pozzi P; Maddalena L; Ceffa N; Soloviev O; Vdovin G; Carroll E; Verhaegen M
    Methods Protoc; 2018 Dec; 2(1):. PubMed ID: 31164587
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Holographic display system for restoration of sight to the blind.
    Goetz GA; Mandel Y; Manivanh R; Palanker DV; Čižmár T
    J Neural Eng; 2013 Oct; 10(5):056021. PubMed ID: 24045579
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Holographic near-eye display system based on double-convergence light Gerchberg-Saxton algorithm.
    Sun P; Chang S; Liu S; Tao X; Wang C; Zheng Z
    Opt Express; 2018 Apr; 26(8):10140-10151. PubMed ID: 29715954
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dual-task convolutional neural network based on the combination of the U-Net and a diffraction propagation model for phase hologram design with suppressed speckle noise.
    Sun X; Mu X; Xu C; Pang H; Deng Q; Zhang K; Jiang H; Du J; Yin S; Du C
    Opt Express; 2022 Jan; 30(2):2646-2658. PubMed ID: 35209400
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Three-dimensional parallel holographic micropatterning using a spatial light modulator.
    Jenness NJ; Wulff KD; Johannes MS; Padgett MJ; Cole DG; Clark RL
    Opt Express; 2008 Sep; 16(20):15942-8. PubMed ID: 18825231
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Non-iterative phase hologram computation for low speckle holographic image projection.
    Mengu D; Ulusoy E; Urey H
    Opt Express; 2016 Mar; 24(5):4462-4476. PubMed ID: 29092274
    [TBL] [Abstract][Full Text] [Related]  

  • 19. High-contrast, speckle-free, true 3D holography via binary CGH optimization.
    Lee B; Kim D; Lee S; Chen C; Lee B
    Sci Rep; 2022 Feb; 12(1):2811. PubMed ID: 35181695
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Computer Generated Holography with Intensity-Graded Patterns.
    Conti R; Assayag O; de Sars V; Guillon M; Emiliani V
    Front Cell Neurosci; 2016; 10():236. PubMed ID: 27799896
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.