BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

218 related articles for article (PubMed ID: 29564525)

  • 21. Production of L-valine from metabolically engineered Corynebacterium glutamicum.
    Wang X; Zhang H; Quinn PJ
    Appl Microbiol Biotechnol; 2018 May; 102(10):4319-4330. PubMed ID: 29594358
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Activity of exporters of Escherichia coli in Corynebacterium glutamicum, and their use to increase L-threonine production.
    Diesveld R; Tietze N; Fürst O; Reth A; Bathe B; Sahm H; Eggeling L
    J Mol Microbiol Biotechnol; 2009; 16(3-4):198-207. PubMed ID: 18594129
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Metabolic engineering of Corynebacterium glutamicum for anthocyanin production.
    Zha J; Zang Y; Mattozzi M; Plassmeier J; Gupta M; Wu X; Clarkson S; Koffas MAG
    Microb Cell Fact; 2018 Sep; 17(1):143. PubMed ID: 30217197
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Identification and application of a growth-regulated promoter for improving L-valine production in Corynebacterium glutamicum.
    Ma Y; Cui Y; Du L; Liu X; Xie X; Chen N
    Microb Cell Fact; 2018 Nov; 17(1):185. PubMed ID: 30474553
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Isolation of fully synthetic promoters for high-level gene expression in Corynebacterium glutamicum.
    Yim SS; An SJ; Kang M; Lee J; Jeong KJ
    Biotechnol Bioeng; 2013 Nov; 110(11):2959-69. PubMed ID: 23633298
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Microbial metabolic engineering for L-threonine production.
    Dong X; Quinn PJ; Wang X
    Subcell Biochem; 2012; 64():283-302. PubMed ID: 23080256
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Engineering a Lysine-ON Riboswitch for Metabolic Control of Lysine Production in Corynebacterium glutamicum.
    Zhou LB; Zeng AP
    ACS Synth Biol; 2015 Dec; 4(12):1335-40. PubMed ID: 26300047
    [TBL] [Abstract][Full Text] [Related]  

  • 28. High-yield ectoine production in engineered Corynebacterium glutamicum by fine metabolic regulation via plug-in repressor library.
    Jiang A; Song Y; You J; Zhang X; Xu M; Rao Z
    Bioresour Technol; 2022 Oct; 362():127802. PubMed ID: 36007762
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Design and testing of a synthetic biology framework for genetic engineering of Corynebacterium glutamicum.
    Ravasi P; Peiru S; Gramajo H; Menzella HG
    Microb Cell Fact; 2012 Nov; 11():147. PubMed ID: 23134565
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A propionate-inducible expression system based on the Corynebacterium glutamicum prpD2 promoter and PrpR activator and its application for the redirection of amino acid biosynthesis pathways.
    Plassmeier JK; Busche T; Molck S; Persicke M; Pühler A; Rückert C; Kalinowski J
    J Biotechnol; 2013 Jan; 163(2):225-32. PubMed ID: 22982516
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The Actinobacterium Corynebacterium glutamicum, an Industrial Workhorse.
    Lee JY; Na YA; Kim E; Lee HS; Kim P
    J Microbiol Biotechnol; 2016 May; 26(5):807-22. PubMed ID: 26838341
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Identification, repair and characterization of a benzyl alcohol-inducible promoter for recombinant proteins overexpression in Corynebacterium glutamicum.
    Liu X; Zhao Z; Dong G; Li Y; Peng F; Liu C; Zhang F; Linhardt RJ; Yang Y; Bai Z
    Enzyme Microb Technol; 2020 Nov; 141():109651. PubMed ID: 33051010
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Metabolic engineering of Corynebacterium glutamicum for fermentative production of chemicals in biorefinery.
    Baritugo KA; Kim HT; David Y; Choi JI; Hong SH; Jeong KJ; Choi JH; Joo JC; Park SJ
    Appl Microbiol Biotechnol; 2018 May; 102(9):3915-3937. PubMed ID: 29557518
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Synthetic biology approaches to access renewable carbon source utilization in Corynebacterium glutamicum.
    Zhao N; Qian L; Luo G; Zheng S
    Appl Microbiol Biotechnol; 2018 Nov; 102(22):9517-9529. PubMed ID: 30218378
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Modular Optimization of a Hemicellulose-Utilizing Pathway in Corynebacterium glutamicum for Consolidated Bioprocessing of Hemicellulosic Biomass.
    Yim SS; Choi JW; Lee SH; Jeong KJ
    ACS Synth Biol; 2016 Apr; 5(4):334-43. PubMed ID: 26808593
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Rational design of a Corynebacterium glutamicum pantothenate production strain and its characterization by metabolic flux analysis and genome-wide transcriptional profiling.
    Hüser AT; Chassagnole C; Lindley ND; Merkamm M; Guyonvarch A; Elisáková V; Pátek M; Kalinowski J; Brune I; Pühler A; Tauch A
    Appl Environ Microbiol; 2005 Jun; 71(6):3255-68. PubMed ID: 15933028
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Construction of Synthetic Promoter-Based Expression Cassettes for the Production of Cadaverine in Recombinant Corynebacterium glutamicum.
    Oh YH; Choi JW; Kim EY; Song BK; Jeong KJ; Park K; Kim IK; Woo HM; Lee SH; Park SJ
    Appl Biochem Biotechnol; 2015 Aug; 176(7):2065-75. PubMed ID: 26047931
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Corynebacterium glutamicum promoters: a practical approach.
    Pátek M; Holátko J; Busche T; Kalinowski J; Nešvera J
    Microb Biotechnol; 2013 Mar; 6(2):103-17. PubMed ID: 23305350
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Rapid combinatorial rewiring of metabolic networks for enhanced poly(3-hydroxybutyrate) production in Corynebacterium glutamicum.
    Yim SS; Choi JW; Lee YJ; Jeong KJ
    Microb Cell Fact; 2023 Feb; 22(1):29. PubMed ID: 36803485
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The DtxR protein acting as dual transcriptional regulator directs a global regulatory network involved in iron metabolism of Corynebacterium glutamicum.
    Brune I; Werner H; Hüser AT; Kalinowski J; Pühler A; Tauch A
    BMC Genomics; 2006 Feb; 7():21. PubMed ID: 16469103
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.