These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
298 related articles for article (PubMed ID: 29564563)
1. A stretchable conductive Polypyrrole Polydimethylsiloxane device fabricated by simple soft lithography and oxygen plasma treatment. Guo XC; Hu WW; Tan SH; Tsao CW Biomed Microdevices; 2018 Mar; 20(2):30. PubMed ID: 29564563 [TBL] [Abstract][Full Text] [Related]
2. Stretchable conductive polypyrrole films modified with dopaminated hyaluronic acid. Texidó R; Orgaz A; Ramos-Pérez V; Borrós S Mater Sci Eng C Mater Biol Appl; 2017 Jul; 76():295-300. PubMed ID: 28482530 [TBL] [Abstract][Full Text] [Related]
3. Rapid prototyping of PDMS devices using SU-8 lithography. Jenkins G Methods Mol Biol; 2013; 949():153-68. PubMed ID: 23329442 [TBL] [Abstract][Full Text] [Related]
4. Stretchable conductive polypyrrole/polyurethane (PPy/PU) strain sensor with netlike microcracks for human breath detection. Li M; Li H; Zhong W; Zhao Q; Wang D ACS Appl Mater Interfaces; 2014 Jan; 6(2):1313-9. PubMed ID: 24369719 [TBL] [Abstract][Full Text] [Related]
5. Facile Synthesis of Conductive Polypyrrole Wrinkle Topographies on Polydimethylsiloxane via a Swelling-Deswelling Process and Their Potential Uses in Tissue Engineering. Aufan MR; Sumi Y; Kim S; Lee JY ACS Appl Mater Interfaces; 2015 Oct; 7(42):23454-63. PubMed ID: 26444932 [TBL] [Abstract][Full Text] [Related]
6. Versatile biomimetic conductive polypyrrole films doped with hyaluronic acid of different molecular weights. Kim S; Jang Y; Jang M; Lim A; Hardy JG; Park HS; Lee JY Acta Biomater; 2018 Oct; 80():258-268. PubMed ID: 30266636 [TBL] [Abstract][Full Text] [Related]
7. Synthesis, characterization and biocompatibility of polypyrrole/Cu(II) metal-organic framework nanocomposites. Neisi Z; Ansari-Asl Z; Jafarinejad-Farsangi S; Tarzi ME; Sedaghat T; Nobakht V Colloids Surf B Biointerfaces; 2019 Jun; 178():365-376. PubMed ID: 30903975 [TBL] [Abstract][Full Text] [Related]
8. Adhesive Stretchable Printed Conductive Thin Film Patterns on PDMS Surface with an Atmospheric Plasma Treatment. Li CY; Liao YC ACS Appl Mater Interfaces; 2016 May; 8(18):11868-74. PubMed ID: 27082455 [TBL] [Abstract][Full Text] [Related]
9. Improvement of PDMS surface biocompatibility is limited by the duration of oxygen plasma treatment. Amerian M; Amerian M; Sameti M; Seyedjafari E J Biomed Mater Res A; 2019 Dec; 107(12):2806-2813. PubMed ID: 31430022 [TBL] [Abstract][Full Text] [Related]
10. A fast and simple method to fabricate circular microchannels in polydimethylsiloxane (PDMS). Abdelgawad M; Wu C; Chien WY; Geddie WR; Jewett MA; Sun Y Lab Chip; 2011 Feb; 11(3):545-51. PubMed ID: 21079874 [TBL] [Abstract][Full Text] [Related]
11. Characterization of four functional biocompatible pressure-sensitive adhesives for rapid prototyping of cell-based lab-on-a-chip and organ-on-a-chip systems. Kratz SRA; Eilenberger C; Schuller P; Bachmann B; Spitz S; Ertl P; Rothbauer M Sci Rep; 2019 Jun; 9(1):9287. PubMed ID: 31243326 [TBL] [Abstract][Full Text] [Related]
12. 3D printing of soft lithography mold for rapid production of polydimethylsiloxane-based microfluidic devices for cell stimulation with concentration gradients. Kamei K; Mashimo Y; Koyama Y; Fockenberg C; Nakashima M; Nakajima M; Li J; Chen Y Biomed Microdevices; 2015 Apr; 17(2):36. PubMed ID: 25686903 [TBL] [Abstract][Full Text] [Related]
13. An oxygen plasma treated poly(dimethylsiloxane) bioscaffold coated with polydopamine for stem cell therapy. Razavi M; Thakor AS J Mater Sci Mater Med; 2018 May; 29(5):54. PubMed ID: 29725867 [TBL] [Abstract][Full Text] [Related]
14. Epithelial cell patterns on a PDMS polymer surface using a micro plasma structure. Kim JH; Seo S; Min J J Biotechnol; 2011 Sep; 155(3):308-11. PubMed ID: 21801765 [TBL] [Abstract][Full Text] [Related]
15. [Preparation and properties of fiber-based conductive composite scaffolds for peripheral nerve regeneration]. Dai W; Shi J; Liu S; Xu Z; Shi Y; Zhao Y; Yang Y Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2019 Mar; 33(3):356-362. PubMed ID: 30874396 [TBL] [Abstract][Full Text] [Related]
16. Carboxy-endcapped conductive polypyrrole: biomimetic conducting polymer for cell scaffolds and electrodes. Lee JW; Serna F; Schmidt CE Langmuir; 2006 Nov; 22(24):9816-9. PubMed ID: 17106966 [TBL] [Abstract][Full Text] [Related]
17. PDMS-Zwitterionic Hybrid for Facile, Antifouling Microfluidic Device Fabrication. Mercader A; Ye SH; Kim S; Orizondo RA; Cho SK; Wagner WR Langmuir; 2022 Mar; 38(12):3775-3784. PubMed ID: 35294197 [TBL] [Abstract][Full Text] [Related]
19. Heparin dopant increases the electrical stability, cell adhesion, and growth of conducting polypyrrole/poly(L,L-lactide) composites. Meng S; Rouabhia M; Shi G; Zhang Z J Biomed Mater Res A; 2008 Nov; 87(2):332-44. PubMed ID: 18181107 [TBL] [Abstract][Full Text] [Related]
20. Micropunching lithography for generating micro- and submicron-patterns on polymer substrates. Chakraborty A; Liu X; Luo C J Vis Exp; 2012 Jul; (65):. PubMed ID: 22805740 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]