BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

296 related articles for article (PubMed ID: 29564563)

  • 1. A stretchable conductive Polypyrrole Polydimethylsiloxane device fabricated by simple soft lithography and oxygen plasma treatment.
    Guo XC; Hu WW; Tan SH; Tsao CW
    Biomed Microdevices; 2018 Mar; 20(2):30. PubMed ID: 29564563
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Stretchable conductive polypyrrole films modified with dopaminated hyaluronic acid.
    Texidó R; Orgaz A; Ramos-Pérez V; Borrós S
    Mater Sci Eng C Mater Biol Appl; 2017 Jul; 76():295-300. PubMed ID: 28482530
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Rapid prototyping of PDMS devices using SU-8 lithography.
    Jenkins G
    Methods Mol Biol; 2013; 949():153-68. PubMed ID: 23329442
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Stretchable conductive polypyrrole/polyurethane (PPy/PU) strain sensor with netlike microcracks for human breath detection.
    Li M; Li H; Zhong W; Zhao Q; Wang D
    ACS Appl Mater Interfaces; 2014 Jan; 6(2):1313-9. PubMed ID: 24369719
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Facile Synthesis of Conductive Polypyrrole Wrinkle Topographies on Polydimethylsiloxane via a Swelling-Deswelling Process and Their Potential Uses in Tissue Engineering.
    Aufan MR; Sumi Y; Kim S; Lee JY
    ACS Appl Mater Interfaces; 2015 Oct; 7(42):23454-63. PubMed ID: 26444932
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Versatile biomimetic conductive polypyrrole films doped with hyaluronic acid of different molecular weights.
    Kim S; Jang Y; Jang M; Lim A; Hardy JG; Park HS; Lee JY
    Acta Biomater; 2018 Oct; 80():258-268. PubMed ID: 30266636
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Synthesis, characterization and biocompatibility of polypyrrole/Cu(II) metal-organic framework nanocomposites.
    Neisi Z; Ansari-Asl Z; Jafarinejad-Farsangi S; Tarzi ME; Sedaghat T; Nobakht V
    Colloids Surf B Biointerfaces; 2019 Jun; 178():365-376. PubMed ID: 30903975
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Adhesive Stretchable Printed Conductive Thin Film Patterns on PDMS Surface with an Atmospheric Plasma Treatment.
    Li CY; Liao YC
    ACS Appl Mater Interfaces; 2016 May; 8(18):11868-74. PubMed ID: 27082455
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Improvement of PDMS surface biocompatibility is limited by the duration of oxygen plasma treatment.
    Amerian M; Amerian M; Sameti M; Seyedjafari E
    J Biomed Mater Res A; 2019 Dec; 107(12):2806-2813. PubMed ID: 31430022
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A fast and simple method to fabricate circular microchannels in polydimethylsiloxane (PDMS).
    Abdelgawad M; Wu C; Chien WY; Geddie WR; Jewett MA; Sun Y
    Lab Chip; 2011 Feb; 11(3):545-51. PubMed ID: 21079874
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Characterization of four functional biocompatible pressure-sensitive adhesives for rapid prototyping of cell-based lab-on-a-chip and organ-on-a-chip systems.
    Kratz SRA; Eilenberger C; Schuller P; Bachmann B; Spitz S; Ertl P; Rothbauer M
    Sci Rep; 2019 Jun; 9(1):9287. PubMed ID: 31243326
    [TBL] [Abstract][Full Text] [Related]  

  • 12. 3D printing of soft lithography mold for rapid production of polydimethylsiloxane-based microfluidic devices for cell stimulation with concentration gradients.
    Kamei K; Mashimo Y; Koyama Y; Fockenberg C; Nakashima M; Nakajima M; Li J; Chen Y
    Biomed Microdevices; 2015 Apr; 17(2):36. PubMed ID: 25686903
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An oxygen plasma treated poly(dimethylsiloxane) bioscaffold coated with polydopamine for stem cell therapy.
    Razavi M; Thakor AS
    J Mater Sci Mater Med; 2018 May; 29(5):54. PubMed ID: 29725867
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Epithelial cell patterns on a PDMS polymer surface using a micro plasma structure.
    Kim JH; Seo S; Min J
    J Biotechnol; 2011 Sep; 155(3):308-11. PubMed ID: 21801765
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Preparation and properties of fiber-based conductive composite scaffolds for peripheral nerve regeneration].
    Dai W; Shi J; Liu S; Xu Z; Shi Y; Zhao Y; Yang Y
    Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2019 Mar; 33(3):356-362. PubMed ID: 30874396
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Carboxy-endcapped conductive polypyrrole: biomimetic conducting polymer for cell scaffolds and electrodes.
    Lee JW; Serna F; Schmidt CE
    Langmuir; 2006 Nov; 22(24):9816-9. PubMed ID: 17106966
    [TBL] [Abstract][Full Text] [Related]  

  • 17. PDMS-Zwitterionic Hybrid for Facile, Antifouling Microfluidic Device Fabrication.
    Mercader A; Ye SH; Kim S; Orizondo RA; Cho SK; Wagner WR
    Langmuir; 2022 Mar; 38(12):3775-3784. PubMed ID: 35294197
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Polydimethylsiloxane SlipChip for mammalian cell culture applications.
    Chang CW; Peng CC; Liao WH; Tung YC
    Analyst; 2015 Nov; 140(21):7355-65. PubMed ID: 26381390
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Heparin dopant increases the electrical stability, cell adhesion, and growth of conducting polypyrrole/poly(L,L-lactide) composites.
    Meng S; Rouabhia M; Shi G; Zhang Z
    J Biomed Mater Res A; 2008 Nov; 87(2):332-44. PubMed ID: 18181107
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Micropunching lithography for generating micro- and submicron-patterns on polymer substrates.
    Chakraborty A; Liu X; Luo C
    J Vis Exp; 2012 Jul; (65):. PubMed ID: 22805740
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.