BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 29564780)

  • 1. Modeling Retinal Diseases Using Genetic Approaches in Mice.
    Maeda A; Maeda T
    Methods Mol Biol; 2018; 1753():41-59. PubMed ID: 29564780
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Potential Therapeutic Agents Against Retinal Diseases Caused by Aberrant Metabolism of Retinoids.
    Liu X; Chen J; Liu Z; Li J; Yao K; Wu Y
    Invest Ophthalmol Vis Sci; 2016 Mar; 57(3):1017-30. PubMed ID: 26962698
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Inherited diseases of photoreceptors and prospects for gene therapy.
    Montana CL; Corbo JC
    Pharmacogenomics; 2008 Mar; 9(3):335-47. PubMed ID: 18303969
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Taking Stock of Retinal Gene Therapy: Looking Back and Moving Forward.
    Bennett J
    Mol Ther; 2017 May; 25(5):1076-1094. PubMed ID: 28391961
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Characterization of a transgenic mouse line lacking photoreceptor development within the ventral retina.
    Fong SL; Criswell MH; Belecky-Adams T; Fong WB; McClintick JN; Kao WW; Edenberg HJ
    Exp Eye Res; 2005 Oct; 81(4):376-88. PubMed ID: 16054133
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Using the rd1 mouse to understand functional and anatomical retinal remodelling and treatment implications in retinitis pigmentosa: A review.
    Kalloniatis M; Nivison-Smith L; Chua J; Acosta ML; Fletcher EL
    Exp Eye Res; 2016 Sep; 150():106-21. PubMed ID: 26521764
    [TBL] [Abstract][Full Text] [Related]  

  • 7. ApoB100,LDLR-/- mice exhibit reduced electroretinographic response and cholesteryl esters deposits in the retina.
    Bretillon L; Acar N; Seeliger MW; Santos M; Maire MA; Juanéda P; Martine L; Grégoire S; Joffre C; Bron AM; Creuzot-Garcher C
    Invest Ophthalmol Vis Sci; 2008 Apr; 49(4):1307-14. PubMed ID: 18385042
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Adeno-associated virus-vectored gene therapy for retinal disease.
    Dinculescu A; Glushakova L; Min SH; Hauswirth WW
    Hum Gene Ther; 2005 Jun; 16(6):649-63. PubMed ID: 15960597
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Reductions in serum vitamin A arrest accumulation of toxic retinal fluorophores: a potential therapy for treatment of lipofuscin-based retinal diseases.
    Radu RA; Han Y; Bui TV; Nusinowitz S; Bok D; Lichter J; Widder K; Travis GH; Mata NL
    Invest Ophthalmol Vis Sci; 2005 Dec; 46(12):4393-401. PubMed ID: 16303925
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Lighting a candle in the dark: advances in genetics and gene therapy of recessive retinal dystrophies.
    den Hollander AI; Black A; Bennett J; Cremers FP
    J Clin Invest; 2010 Sep; 120(9):3042-53. PubMed ID: 20811160
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Physiology of the visual retinal signal: From phototransduction to the visual cycle].
    Salesse C
    J Fr Ophtalmol; 2017 Mar; 40(3):239-250. PubMed ID: 28318721
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nanoparticle-based technologies for retinal gene therapy.
    Adijanto J; Naash MI
    Eur J Pharm Biopharm; 2015 Sep; 95(Pt B):353-67. PubMed ID: 25592325
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Supplementation with vitamin a derivatives to rescue vision in animal models of degenerative retinal diseases.
    Perusek L; Maeda A; Maeda T
    Methods Mol Biol; 2015; 1271():345-62. PubMed ID: 25697534
    [TBL] [Abstract][Full Text] [Related]  

  • 14.
    Guziewicz KE; Cideciyan AV; Beltran WA; Komáromy AM; Dufour VL; Swider M; Iwabe S; Sumaroka A; Kendrick BT; Ruthel G; Chiodo VA; Héon E; Hauswirth WW; Jacobson SG; Aguirre GD
    Proc Natl Acad Sci U S A; 2018 Mar; 115(12):E2839-E2848. PubMed ID: 29507198
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Determination of Mitochondrial Oxygen Consumption in the Retina Ex Vivo: Applications for Retinal Disease.
    Adlakha YK; Swaroop A
    Methods Mol Biol; 2018; 1753():167-177. PubMed ID: 29564788
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Optogenetic Retinal Gene Therapy with the Light Gated GPCR Vertebrate Rhodopsin.
    Gaub BM; Berry MH; Visel M; Holt A; Isacoff EY; Flannery JG
    Methods Mol Biol; 2018; 1715():177-189. PubMed ID: 29188513
    [TBL] [Abstract][Full Text] [Related]  

  • 17. AAV-mediated gene delivery in Dp71-null mouse model with compromised barriers.
    Vacca O; Darche M; Schaffer DV; Flannery JG; Sahel JA; Rendon A; Dalkara D
    Glia; 2014 Mar; 62(3):468-76. PubMed ID: 24382652
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Biology and therapy of inherited retinal degenerative disease: insights from mouse models.
    Veleri S; Lazar CH; Chang B; Sieving PA; Banin E; Swaroop A
    Dis Model Mech; 2015 Feb; 8(2):109-29. PubMed ID: 25650393
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Characterization of new transcripts enriched in the mouse retina and identification of candidate retinal disease genes.
    Lord-Grignon J; Tétreault N; Mears AJ; Swaroop A; Bernier G
    Invest Ophthalmol Vis Sci; 2004 Sep; 45(9):3313-9. PubMed ID: 15326156
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Retinal pathology and function in a Cln3 knockout mouse model of juvenile Neuronal Ceroid Lipofuscinosis (batten disease).
    Seigel GM; Lotery A; Kummer A; Bernard DJ; Greene ND; Turmaine M; Derksen T; Nussbaum RL; Davidson B; Wagner J; Mitchison HM
    Mol Cell Neurosci; 2002 Apr; 19(4):515-27. PubMed ID: 11988019
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.