BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

526 related articles for article (PubMed ID: 29564782)

  • 1. Two-Photon Microscopy (TPM) and Fluorescence Lifetime Imaging Microscopy (FLIM) of Retinal Pigment Epithelium (RPE) of Mice In Vivo.
    Miura Y
    Methods Mol Biol; 2018; 1753():73-88. PubMed ID: 29564782
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Two-photon microscopy and fluorescence lifetime imaging of retinal pigment epithelial cells under oxidative stress.
    Miura Y; Huettmann G; Orzekowsky-Schroeder R; Steven P; Szaszák M; Koop N; Brinkmann R
    Invest Ophthalmol Vis Sci; 2013 May; 54(5):3366-77. PubMed ID: 23557738
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Multiphoton FLIM imaging of NAD(P)H and FAD with one excitation wavelength.
    Cao R; Wallrabe H; Periasamy A
    J Biomed Opt; 2020 Jan; 25(1):1-16. PubMed ID: 31920048
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Autofluorescence lifetime imaging of cellular metabolism: Sensitivity toward cell density, pH, intracellular, and intercellular heterogeneity.
    Chacko JV; Eliceiri KW
    Cytometry A; 2019 Jan; 95(1):56-69. PubMed ID: 30296355
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Imaging hydroxyapatite in sub-retinal pigment epithelial deposits by fluorescence lifetime imaging microscopy with tetracycline staining.
    Szmacinski H; Hegde K; Zeng HH; Eslami K; Puche AC; Lengyel I; Thompson RB
    J Biomed Opt; 2020 Apr; 25(4):1-11. PubMed ID: 32319262
    [TBL] [Abstract][Full Text] [Related]  

  • 6. High-speed two-photon excited autofluorescence imaging of ex vivo human retinal pigment epithelial cells toward age-related macular degeneration diagnostic.
    La Schiazza O; Bille JF
    J Biomed Opt; 2008; 13(6):064008. PubMed ID: 19123655
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Two-photon-excited fluorescence imaging of human RPE cells with a femtosecond Ti:Sapphire laser.
    Bindewald-Wittich A; Han M; Schmitz-Valckenberg S; Snyder SR; Giese G; Bille JF; Holz FG
    Invest Ophthalmol Vis Sci; 2006 Oct; 47(10):4553-7. PubMed ID: 17003452
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Noninvasive Two-Photon Microscopy Imaging of Mouse Retina and Retinal Pigment Epithelium.
    Palczewska G; Kern TS; Palczewski K
    Methods Mol Biol; 2019; 1834():333-343. PubMed ID: 30324453
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Two-photon excited autofluorescence imaging of human retinal pigment epithelial cells.
    Han M; Bindewald-Wittich A; Holz FG; Giese G; Niemz MH; Snyder S; Sun H; Yu J; Agopov M; La Schiazza O; Bille JF
    J Biomed Opt; 2006; 11(1):010501. PubMed ID: 16526877
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Two-photon FLIM of NAD(P)H and FAD in mesenchymal stem cells undergoing either osteogenic or chondrogenic differentiation.
    Meleshina AV; Dudenkova VV; Bystrova AS; Kuznetsova DS; Shirmanova MV; Zagaynova EV
    Stem Cell Res Ther; 2017 Jan; 8(1):15. PubMed ID: 28129796
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Multicolor two-photon imaging of endogenous fluorophores in living tissues by wavelength mixing.
    Stringari C; Abdeladim L; Malkinson G; Mahou P; Solinas X; Lamarre I; Brizion S; Galey JB; Supatto W; Legouis R; Pena AM; Beaurepaire E
    Sci Rep; 2017 Jun; 7(1):3792. PubMed ID: 28630487
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Two-Photon Intravital Fluorescence Lifetime Imaging of the Kidney Reveals Cell-Type Specific Metabolic Signatures.
    Hato T; Winfree S; Day R; Sandoval RM; Molitoris BA; Yoder MC; Wiggins RC; Zheng Y; Dunn KW; Dagher PC
    J Am Soc Nephrol; 2017 Aug; 28(8):2420-2430. PubMed ID: 28250053
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Insights into Metabolic Activity and Structure of the Retina through Multiphoton Fluorescence Lifetime Imaging Microscopy in Mice.
    Kesavamoorthy N; Junge JA; Fraser SE; Ameri H
    Cells; 2022 Jul; 11(15):. PubMed ID: 35892562
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Recent trends in two-photon auto-fluorescence lifetime imaging (2P-FLIM) and its biomedical applications.
    Ranawat H; Pal S; Mazumder N
    Biomed Eng Lett; 2019 Aug; 9(3):293-310. PubMed ID: 31456890
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Metabolic imaging with the use of fluorescence lifetime imaging microscopy (FLIM) accurately detects mitochondrial dysfunction in mouse oocytes.
    Sanchez T; Wang T; Pedro MV; Zhang M; Esencan E; Sakkas D; Needleman D; Seli E
    Fertil Steril; 2018 Dec; 110(7):1387-1397. PubMed ID: 30446247
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Two-photon fluorescence lifetime imaging microscopy of NADH metabolism in HIV-1 infected cells and tissues.
    Snyder GA; Kumar S; Lewis GK; Ray K
    Front Immunol; 2023; 14():1213180. PubMed ID: 37662898
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Label-Free Optical Metabolic Imaging in Cells and Tissues.
    Georgakoudi I; Quinn KP
    Annu Rev Biomed Eng; 2023 Jun; 25():413-443. PubMed ID: 37104650
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Metabolic imaging using two-photon excited NADH intensity and fluorescence lifetime imaging.
    Vergen J; Hecht C; Zholudeva LV; Marquardt MM; Hallworth R; Nichols MG
    Microsc Microanal; 2012 Aug; 18(4):761-70. PubMed ID: 22832200
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Method for Multiplexed Dynamic Intravital Multiphoton Imaging.
    Rakhymzhan A; Acs A; Leben R; Winkler TH; Hauser AE; Niesner RA
    Methods Mol Biol; 2021; 2350():145-156. PubMed ID: 34331284
    [TBL] [Abstract][Full Text] [Related]  

  • 20. In vivo fluorescence lifetime imaging of macrophage intracellular metabolism during wound responses in zebrafish.
    Miskolci V; Tweed KE; Lasarev MR; Britt EC; Walsh AJ; Zimmerman LJ; McDougal CE; Cronan MR; Fan J; Sauer JD; Skala MC; Huttenlocher A
    Elife; 2022 Feb; 11():. PubMed ID: 35200139
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 27.