These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 29564784)

  • 1. Use of Direct Current Electroretinography for Analysis of Retinal Pigment Epithelium Function in Mouse Models.
    Yu M; Peachey NS
    Methods Mol Biol; 2018; 1753():103-113. PubMed ID: 29564784
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Measuring Retinal Function in the Mouse.
    Kremers J; Tanimoto N
    Methods Mol Biol; 2018; 1753():27-40. PubMed ID: 29564779
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Light-evoked responses of the retinal pigment epithelium: changes accompanying photoreceptor loss in the mouse.
    Samuels IS; Sturgill GM; Grossman GH; Rayborn ME; Hollyfield JG; Peachey NS
    J Neurophysiol; 2010 Jul; 104(1):391-402. PubMed ID: 20484527
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Noninvasive Electroretinographic Procedures for the Study of the Mouse Retina.
    Kinoshita J; Peachey NS
    Curr Protoc Mouse Biol; 2018 Mar; 8(1):1-16. PubMed ID: 30040236
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Direct-Coupled Electroretinogram (DC-ERG) for Recording the Light-Evoked Electrical Responses of the Mouse Retinal Pigment Epithelium.
    Miyagishima KJ; Zhang C; Malechka VV; Bharti K; Li W
    J Vis Exp; 2020 Jul; (161):. PubMed ID: 32744516
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of cAMP and IBMX on the chick retinal pigment epithelium. Membrane potentials and light-evoked responses.
    Nao-i N; Gallemore RP; Steinberg RH
    Invest Ophthalmol Vis Sci; 1990 Jan; 31(1):54-66. PubMed ID: 1688834
    [TBL] [Abstract][Full Text] [Related]  

  • 7. RPE Visual Cycle and Biochemical Phenotypes of Mutant Mouse Models.
    Sahu B; Maeda A
    Methods Mol Biol; 2018; 1753():89-102. PubMed ID: 29564783
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Early retinal pigment epithelium dysfunction is concomitant with hyperglycemia in mouse models of type 1 and type 2 diabetes.
    Samuels IS; Bell BA; Pereira A; Saxon J; Peachey NS
    J Neurophysiol; 2015 Feb; 113(4):1085-99. PubMed ID: 25429122
    [TBL] [Abstract][Full Text] [Related]  

  • 9. In vivo monitoring of mouse retinal temperature by ERG photoresponses.
    Pitkänen M; Kaikkonen O; Koskelainen A
    Exp Eye Res; 2019 Oct; 187():107675. PubMed ID: 31128102
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A Novel Method for Mouse Retinal Temperature Determination Based on ERG Photoresponses.
    Pitkänen M; Kaikkonen O; Koskelainen A
    Ann Biomed Eng; 2017 Oct; 45(10):2360-2372. PubMed ID: 28620767
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Exclusion of aldose reductase as a mediator of ERG deficits in a mouse model of diabetic eye disease.
    Samuels IS; Lee CA; Petrash JM; Peachey NS; Kern TS
    Vis Neurosci; 2012 Nov; 29(6):267-74. PubMed ID: 23101909
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mouse slc9a8 mutants exhibit retinal defects due to retinal pigmented epithelium dysfunction.
    Jadeja S; Barnard AR; McKie L; Cross SH; White JK; ; Robertson M; Budd PS; MacLaren RE; Jackson IJ
    Invest Ophthalmol Vis Sci; 2015 May; 56(5):3015-26. PubMed ID: 25736793
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Noninvasive recording and response characteristics of the rat dc-electroretinogram.
    Peachey NS; Stanton JB; Marmorstein AD
    Vis Neurosci; 2002; 19(6):693-701. PubMed ID: 12688665
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A Splicing Mutation in
    Collin GB; Shi L; Yu M; Akturk N; Charette JR; Hyde LF; Weatherly SM; Pera MF; Naggert JK; Peachey NS; Nishina PM; Krebs MP
    Int J Mol Sci; 2022 Feb; 23(4):. PubMed ID: 35216333
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Light-evoked responses of the mouse retinal pigment epithelium.
    Wu J; Peachey NS; Marmorstein AD
    J Neurophysiol; 2004 Mar; 91(3):1134-42. PubMed ID: 14614107
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Retinal Pigment Epithelium Atrophy 1 (rpea1): A New Mouse Model With Retinal Detachment Caused by a Disruption of Protein Kinase C, θ.
    Ji X; Liu Y; Hurd R; Wang J; Fitzmaurice B; Nishina PM; Chang B
    Invest Ophthalmol Vis Sci; 2016 Mar; 57(3):877-88. PubMed ID: 26978024
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Deletion of autophagy inducer RB1CC1 results in degeneration of the retinal pigment epithelium.
    Yao J; Jia L; Khan N; Lin C; Mitter SK; Boulton ME; Dunaief JL; Klionsky DJ; Guan JL; Thompson DA; Zacks DN
    Autophagy; 2015; 11(6):939-53. PubMed ID: 26075877
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Effect of Hypericin on the Function of the Neuroretina: An Electroretinographic Study].
    Alnawaiseh M; Albanna W; Abumuaileq R; Böhm MR; Eter N; Schneider T
    Klin Monbl Augenheilkd; 2015 Nov; 232(11):1304-7. PubMed ID: 26197957
    [TBL] [Abstract][Full Text] [Related]  

  • 19. In vitro electroretinogram for the study of the functionality of differentiated retinal pigment epithelium cells.
    Onnela N; Lehtonen L; Koski M; Hyttinen J
    Med Biol Eng Comput; 2013 Feb; 51(1-2):61-70. PubMed ID: 23065627
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Electroretinographic signs of retinal remodeling after experimental induction of retinal pigment epithelium atrophy.
    Neroev VV; Neroeva NV; Zueva MV; Katargina LA; Tsapenko IV; Ilyukhin PA; Losanova OA; Karmokova AG; Rogov SV
    Vestn Oftalmol; 2021; 137(4):24-30. PubMed ID: 34410053
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.