These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 29564785)

  • 1. Disruption of Rhodopsin Dimerization in Mouse Rod Photoreceptors by Synthetic Peptides Targeting Dimer Interface.
    Kumar S; Lambert A; Rainier J; Fu Y
    Methods Mol Biol; 2018; 1753():115-128. PubMed ID: 29564785
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Disruption of Rhodopsin Dimerization with Synthetic Peptides Targeting an Interaction Interface.
    Jastrzebska B; Chen Y; Orban T; Jin H; Hofmann L; Palczewski K
    J Biol Chem; 2015 Oct; 290(42):25728-44. PubMed ID: 26330551
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cryo-EM structure of the native rhodopsin dimer in nanodiscs.
    Zhao DY; Pöge M; Morizumi T; Gulati S; Van Eps N; Zhang J; Miszta P; Filipek S; Mahamid J; Plitzko JM; Baumeister W; Ernst OP; Palczewski K
    J Biol Chem; 2019 Sep; 294(39):14215-14230. PubMed ID: 31399513
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dimerization of visual pigments in vivo.
    Zhang T; Cao LH; Kumar S; Enemchukwu NO; Zhang N; Lambert A; Zhao X; Jones A; Wang S; Dennis EM; Fnu A; Ham S; Rainier J; Yau KW; Fu Y
    Proc Natl Acad Sci U S A; 2016 Aug; 113(32):9093-8. PubMed ID: 27462111
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Affinity of rhodopsin to raft enables the aligned oligomer formation from dimers: Coarse-grained molecular dynamics simulation of disk membranes.
    Kaneshige Y; Hayashi F; Morigaki K; Tanimoto Y; Yamashita H; Fujii M; Awazu A
    PLoS One; 2020; 15(2):e0226123. PubMed ID: 32032370
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Organization of the G protein-coupled receptors rhodopsin and opsin in native membranes.
    Liang Y; Fotiadis D; Filipek S; Saperstein DA; Palczewski K; Engel A
    J Biol Chem; 2003 Jun; 278(24):21655-21662. PubMed ID: 12663652
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Monitoring of rhodopsin trafficking and mistrafficking in live photoreceptors.
    Lodowski KH; Imanishi Y
    Methods Mol Biol; 2015; 1271():293-307. PubMed ID: 25697531
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hydrophobic interaction between the TM1 and H8 is essential for rhodopsin trafficking to vertebrate photoreceptor outer segments.
    Verma DK; Malhotra H; Woellert T; Calvert PD
    J Biol Chem; 2023 Dec; 299(12):105412. PubMed ID: 37918805
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The G protein-coupled receptor rhodopsin: a historical perspective.
    Hofmann L; Palczewski K
    Methods Mol Biol; 2015; 1271():3-18. PubMed ID: 25697513
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ablation of Chop Transiently Enhances Photoreceptor Survival but Does Not Prevent Retinal Degeneration in Transgenic Mice Expressing Human P23H Rhodopsin.
    Chiang WC; Joseph V; Yasumura D; Matthes MT; Lewin AS; Gorbatyuk MS; Ahern K; LaVail MM; Lin JH
    Adv Exp Med Biol; 2016; 854():185-91. PubMed ID: 26427410
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of Rhodopsin Phosphorylation on Dark Adaptation in Mouse Rods.
    Berry J; Frederiksen R; Yao Y; Nymark S; Chen J; Cornwall C
    J Neurosci; 2016 Jun; 36(26):6973-87. PubMed ID: 27358455
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Rhodopsin Trafficking and Mistrafficking: Signals, Molecular Components, and Mechanisms.
    Nemet I; Ropelewski P; Imanishi Y
    Prog Mol Biol Transl Sci; 2015; 132():39-71. PubMed ID: 26055054
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Relevance of rhodopsin studies for GPCR activation.
    Deupi X
    Biochim Biophys Acta; 2014 May; 1837(5):674-82. PubMed ID: 24041646
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A concept for G protein activation by G protein-coupled receptor dimers: the transducin/rhodopsin interface.
    Filipek S; Krzysko KA; Fotiadis D; Liang Y; Saperstein DA; Engel A; Palczewski K
    Photochem Photobiol Sci; 2004 Jun; 3(6):628-38. PubMed ID: 15170495
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Supramolecular organization of rhodopsin in rod photoreceptor cell membranes.
    Park PS
    Pflugers Arch; 2021 Sep; 473(9):1361-1376. PubMed ID: 33591421
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Green cone opsin and rhodopsin regulation by CNTF and staurosporine in cultured chick photoreceptors.
    Xie HQ; Adler R
    Invest Ophthalmol Vis Sci; 2000 Dec; 41(13):4317-23. PubMed ID: 11095633
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The endoplasmic reticulum membrane protein complex subunit
    Sun K; Liu L; Jiang X; Wang H; Wang L; Yang Y; Liu W; Zhang L; Zhao X; Zhu X
    Genes Dis; 2024 Mar; 11(2):1035-1049. PubMed ID: 37692493
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Autophagy and ER-stress contribute to photoreceptor degeneration in cultured adult porcine retina.
    Mohlin C; Taylor L; Ghosh F; Johansson K
    Brain Res; 2014 Oct; 1585():167-83. PubMed ID: 25173074
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Rhodopsin forms a dimer with cytoplasmic helix 8 contacts in native membranes.
    Knepp AM; Periole X; Marrink SJ; Sakmar TP; Huber T
    Biochemistry; 2012 Mar; 51(9):1819-21. PubMed ID: 22352709
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Local peptide movement in the photoreaction intermediate of rhodopsin.
    Nakamichi H; Okada T
    Proc Natl Acad Sci U S A; 2006 Aug; 103(34):12729-34. PubMed ID: 16908857
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.