BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

329 related articles for article (PubMed ID: 29564828)

  • 1. Genes, Proteins, and Biological Pathways Preventing Chromothripsis.
    Poot M
    Methods Mol Biol; 2018; 1769():231-251. PubMed ID: 29564828
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Chromothripsis and DNA Repair Disorders.
    Nazaryan-Petersen L; Bjerregaard VA; Nielsen FC; Tommerup N; Tümer Z
    J Clin Med; 2020 Feb; 9(3):. PubMed ID: 32106411
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Germline Chromothripsis Driven by L1-Mediated Retrotransposition and Alu/Alu Homologous Recombination.
    Nazaryan-Petersen L; Bertelsen B; Bak M; Jønson L; Tommerup N; Hancks DC; Tümer Z
    Hum Mutat; 2016 Apr; 37(4):385-95. PubMed ID: 26929209
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Chromoanagenesis: cataclysms behind complex chromosomal rearrangements.
    Pellestor F
    Mol Cytogenet; 2019; 12():6. PubMed ID: 30805029
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Rebuilding Chromosomes After Catastrophe: Emerging Mechanisms of Chromothripsis.
    Ly P; Cleveland DW
    Trends Cell Biol; 2017 Dec; 27(12):917-930. PubMed ID: 28899600
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Established and Novel Mechanisms Leading to de novo Genomic Rearrangements in the Human Germline.
    Hattori A; Fukami M
    Cytogenet Genome Res; 2020; 160(4):167-176. PubMed ID: 32396893
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Catastrophic cellular events leading to complex chromosomal rearrangements in the germline.
    Fukami M; Shima H; Suzuki E; Ogata T; Matsubara K; Kamimaki T
    Clin Genet; 2017 May; 91(5):653-660. PubMed ID: 27888607
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Genomic rearrangements induced by unscheduled DNA double strand breaks in somatic mammalian cells.
    So A; Le Guen T; Lopez BS; Guirouilh-Barbat J
    FEBS J; 2017 Aug; 284(15):2324-2344. PubMed ID: 28244221
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Detection of Impaired DNA Replication and Repair in Micronuclei as Indicators of Genomic Instability and Chromothripsis.
    Terradas M; Martín M; Genescà A
    Methods Mol Biol; 2018; 1769():197-208. PubMed ID: 29564826
    [TBL] [Abstract][Full Text] [Related]  

  • 10. NHEJ Contributes to the Fast Repair of Radiation-induced DNA Double-strand Breaks at Late Prophase I Telomeres.
    Ahmed EA; Rosemann M; Scherthan H
    Health Phys; 2018 Jul; 115(1):102-107. PubMed ID: 29787435
    [TBL] [Abstract][Full Text] [Related]  

  • 11. APOBEC3-dependent kataegis and TREX1-driven chromothripsis during telomere crisis.
    Maciejowski J; Chatzipli A; Dananberg A; Chu K; Toufektchan E; Klimczak LJ; Gordenin DA; Campbell PJ; de Lange T
    Nat Genet; 2020 Sep; 52(9):884-890. PubMed ID: 32719516
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The genomic characteristics and cellular origin of chromothripsis.
    Storchová Z; Kloosterman WP
    Curr Opin Cell Biol; 2016 Jun; 40():106-113. PubMed ID: 27023493
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Constitutional chromothripsis rearrangements involve clustered double-stranded DNA breaks and nonhomologous repair mechanisms.
    Kloosterman WP; Tavakoli-Yaraki M; van Roosmalen MJ; van Binsbergen E; Renkens I; Duran K; Ballarati L; Vergult S; Giardino D; Hansson K; Ruivenkamp CA; Jager M; van Haeringen A; Ippel EF; Haaf T; Passarge E; Hochstenbach R; Menten B; Larizza L; Guryev V; Poot M; Cuppen E
    Cell Rep; 2012 Jun; 1(6):648-55. PubMed ID: 22813740
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mechanisms of germ line genome instability.
    Kim S; Peterson SE; Jasin M; Keeney S
    Semin Cell Dev Biol; 2016 Jun; 54():177-87. PubMed ID: 26880205
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Chromothripsis and Kataegis Induced by Telomere Crisis.
    Maciejowski J; Li Y; Bosco N; Campbell PJ; de Lange T
    Cell; 2015 Dec; 163(7):1641-54. PubMed ID: 26687355
    [TBL] [Abstract][Full Text] [Related]  

  • 16. 53BP1 promotes non-homologous end joining of telomeres by increasing chromatin mobility.
    Dimitrova N; Chen YC; Spector DL; de Lange T
    Nature; 2008 Nov; 456(7221):524-8. PubMed ID: 18931659
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Chromoanagenesis, the mechanisms of a genomic chaos.
    Pellestor F; Gaillard JB; Schneider A; Puechberty J; Gatinois V
    Semin Cell Dev Biol; 2022 Mar; 123():90-99. PubMed ID: 33608210
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Chromoanasynthesis: another way for the formation of complex chromosomal abnormalities in human reproduction.
    Pellestor F; Gatinois V
    Hum Reprod; 2018 Aug; 33(8):1381-1387. PubMed ID: 30325427
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Multiple pathways suppress telomere addition to DNA breaks in the Drosophila germline.
    Beaucher M; Zheng XF; Amariei F; Rong YS
    Genetics; 2012 Jun; 191(2):407-17. PubMed ID: 22446318
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Genomic profiling of Acute lymphoblastic leukemia in ataxia telangiectasia patients reveals tight link between ATM mutations and chromothripsis.
    Ratnaparkhe M; Hlevnjak M; Kolb T; Jauch A; Maass KK; Devens F; Rode A; Hovestadt V; Korshunov A; Pastorczak A; Mlynarski W; Sungalee S; Korbel J; Hoell J; Fischer U; Milde T; Kramm C; Nathrath M; Chrzanowska K; Tausch E; Takagi M; Taga T; Constantini S; Loeffen J; Meijerink J; Zielen S; Gohring G; Schlegelberger B; Maass E; Siebert R; Kunz J; Kulozik AE; Worst B; Jones DT; Pfister SM; Zapatka M; Lichter P; Ernst A
    Leukemia; 2017 Oct; 31(10):2048-2056. PubMed ID: 28196983
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.