BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

176 related articles for article (PubMed ID: 29564835)

  • 1. Looking for Broken TAD Boundaries and Changes on DNA Interactions: Clinical Guide to 3D Chromatin Change Analysis in Complex Chromosomal Rearrangements and Chromothripsis.
    Yauy K; Gatinois V; Guignard T; Sati S; Puechberty J; Gaillard JB; Schneider A; Pellestor F
    Methods Mol Biol; 2018; 1769():353-361. PubMed ID: 29564835
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Resolving complex structural genomic rearrangements using a randomized approach.
    Zhao X; Emery SB; Myers B; Kidd JM; Mills RE
    Genome Biol; 2016 Jun; 17(1):126. PubMed ID: 27287201
    [TBL] [Abstract][Full Text] [Related]  

  • 3. ChromothripsisDB: A Curated Database for the Documentation, Visualization, and Mining of Chromothripsis Data.
    Cai H
    Methods Mol Biol; 2018; 1769():279-289. PubMed ID: 29564831
    [TBL] [Abstract][Full Text] [Related]  

  • 4. TAD boundary and strength prediction by integrating sequence and epigenetic profile information.
    Wang Y; Liu Y; Xu Q; Xu Y; Cao K; Deng N; Wang R; Zhang X; Zheng R; Li G; Fang Y
    Brief Bioinform; 2021 Sep; 22(5):. PubMed ID: 33866359
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A pipeline for complete characterization of complex germline rearrangements from long DNA reads.
    Mitsuhashi S; Ohori S; Katoh K; Frith MC; Matsumoto N
    Genome Med; 2020 Jul; 12(1):67. PubMed ID: 32731881
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Transient multifocal genomic crisis creating chromothriptic and non-chromothriptic rearrangements in prezygotic testicular germ cells.
    Hattori A; Okamura K; Terada Y; Tanaka R; Katoh-Fukui Y; Matsubara Y; Matsubara K; Kagami M; Horikawa R; Fukami M
    BMC Med Genomics; 2019 May; 12(1):77. PubMed ID: 31138192
    [TBL] [Abstract][Full Text] [Related]  

  • 7. InTAD: chromosome conformation guided analysis of enhancer target genes.
    Okonechnikov K; Erkek S; Korbel JO; Pfister SM; Chavez L
    BMC Bioinformatics; 2019 Jan; 20(1):60. PubMed ID: 30704404
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Chromothripsis-like chromosomal rearrangements induced by ionizing radiation using proton microbeam irradiation system.
    Morishita M; Muramatsu T; Suto Y; Hirai M; Konishi T; Hayashi S; Shigemizu D; Tsunoda T; Moriyama K; Inazawa J
    Oncotarget; 2016 Mar; 7(9):10182-92. PubMed ID: 26862731
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Genomic Database Searching.
    Hutchins JR
    Methods Mol Biol; 2017; 1525():225-269. PubMed ID: 27896724
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Epigenetic maintenance of topological domains in the highly rearranged gibbon genome.
    Lazar NH; Nevonen KA; O'Connell B; McCann C; O'Neill RJ; Green RE; Meyer TJ; Okhovat M; Carbone L
    Genome Res; 2018 Jul; 28(7):983-997. PubMed ID: 29914971
    [TBL] [Abstract][Full Text] [Related]  

  • 11. ClusterTAD: an unsupervised machine learning approach to detecting topologically associated domains of chromosomes from Hi-C data.
    Oluwadare O; Cheng J
    BMC Bioinformatics; 2017 Nov; 18(1):480. PubMed ID: 29137603
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The Genomic Characteristics and Origin of Chromothripsis.
    Marcozzi A; Pellestor F; Kloosterman WP
    Methods Mol Biol; 2018; 1769():3-19. PubMed ID: 29564814
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Defining the diverse spectrum of inversions, complex structural variation, and chromothripsis in the morbid human genome.
    Collins RL; Brand H; Redin CE; Hanscom C; Antolik C; Stone MR; Glessner JT; Mason T; Pregno G; Dorrani N; Mandrile G; Giachino D; Perrin D; Walsh C; Cipicchio M; Costello M; Stortchevoi A; An JY; Currall BB; Seabra CM; Ragavendran A; Margolin L; Martinez-Agosto JA; Lucente D; Levy B; Sanders SJ; Wapner RJ; Quintero-Rivera F; Kloosterman W; Talkowski ME
    Genome Biol; 2017 Mar; 18(1):36. PubMed ID: 28260531
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Unexpected effects of different genetic backgrounds on identification of genomic rearrangements via whole-genome next generation sequencing.
    Chen Z; Gowan K; Leach SM; Viboolsittiseri SS; Mishra AK; Kadoishi T; Diener K; Gao B; Jones K; Wang JH
    BMC Genomics; 2016 Oct; 17(1):823. PubMed ID: 27769169
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Chromothripsis Detection and Characterization Using the CTLPScanner Web Server.
    Yang J; Liu B; Cai H
    Methods Mol Biol; 2018; 1769():265-278. PubMed ID: 29564830
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Chromothripsis in healthy individuals affects multiple protein-coding genes and can result in severe congenital abnormalities in offspring.
    de Pagter MS; van Roosmalen MJ; Baas AF; Renkens I; Duran KJ; van Binsbergen E; Tavakoli-Yaraki M; Hochstenbach R; van der Veken LT; Cuppen E; Kloosterman WP
    Am J Hum Genet; 2015 Apr; 96(4):651-6. PubMed ID: 25799107
    [TBL] [Abstract][Full Text] [Related]  

  • 17. ngs.plot: Quick mining and visualization of next-generation sequencing data by integrating genomic databases.
    Shen L; Shao N; Liu X; Nestler E
    BMC Genomics; 2014 Apr; 15():284. PubMed ID: 24735413
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An alignment-free method to find and visualise rearrangements between pairs of DNA sequences.
    Pratas D; Silva RM; Pinho AJ; Ferreira PJ
    Sci Rep; 2015 May; 5():10203. PubMed ID: 25984837
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Functional Consequences of Chromosomal Rearrangements on Gene Expression: Not So Deleterious After All?
    Ghavi-Helm Y
    J Mol Biol; 2020 Feb; 432(3):665-675. PubMed ID: 31626801
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Clinical impact of chromothriptic complex chromosomal rearrangements in newly diagnosed multiple myeloma.
    Kaur G; Gupta R; Mathur N; Rani L; Kumar L; Sharma A; Singh V; Gupta A; Sharma OD
    Leuk Res; 2019 Jan; 76():58-64. PubMed ID: 30576858
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.