These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 29565094)

  • 1. Theoretical study of radiative and nonradiative decay rates for Cu(i) complexes with double heteroleptic ligands.
    Chen Y; Ren A; Yang Z; He T; Ding X; Zhang H; Zou L
    Phys Chem Chem Phys; 2018 Apr; 20(14):9419-9428. PubMed ID: 29565094
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Theoretical Insights into the Photo-Deactivation of Emitting Triplet Excited State of (C^N)Pt(O^O) Complexes: Radiative and Nonradiative Decay Processes.
    Xu Y; Luo Y; Li M; He R; Shen W
    J Phys Chem A; 2016 Sep; 120(34):6813-21. PubMed ID: 27517617
    [TBL] [Abstract][Full Text] [Related]  

  • 3. How do ligands influence the quantum yields of cyclometalated platinum(ii) complexes, a theoretical research study.
    Yang B; Huang S; Wang J
    Phys Chem Chem Phys; 2017 Aug; 19(34):23454-23460. PubMed ID: 28828459
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of Main Versus Ancillary Ligand Substitution on the Photophysical Properties of a Series of Ir(III) Complexes: A Detailed Theoretical Investigation.
    Gayen P; Das U; Banerjee S
    J Phys Chem A; 2020 Jun; 124(23):4654-4665. PubMed ID: 32438808
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Intrinsic Analysis of Radiative and Room-Temperature Nonradiative Processes Based on Triplet State Intramolecular Vibrations of Heavy Atom-Free Conjugated Molecules toward Efficient Persistent Room-Temperature Phosphorescence.
    Hirata S
    J Phys Chem Lett; 2018 Aug; 9(15):4251-4259. PubMed ID: 29979876
    [TBL] [Abstract][Full Text] [Related]  

  • 6. TADF Material Design: Photophysical Background and Case Studies Focusing on Cu
    Yersin H; Czerwieniec R; Shafikov MZ; Suleymanova AF
    Chemphyschem; 2017 Dec; 18(24):3508-3535. PubMed ID: 29083512
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Theoretical insights into the effect of ligands on platinum(ii) complexes with a bidentate bis(o-carborane) ligand structure.
    Zhao A; Cai W; Yan X; Zhang H; Wang J; Shen W
    Photochem Photobiol Sci; 2019 Oct; 18(10):2421-2429. PubMed ID: 31369026
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Theoretical Studies of Photodeactivation Pathways of NHC-Chelate Pt(II) Compounds with Different Numbers of Triarylboron Units: Radiative and Nonradiative Decay Processes.
    Zhang F; Xu Y; Zhang W; Shen W; Li M; He R
    J Phys Chem A; 2017 Jan; 121(3):690-698. PubMed ID: 28040894
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Intersystem-crossing and phosphorescence rates in fac-Ir(III)(ppy)3: a theoretical study involving multi-reference configuration interaction wavefunctions.
    Kleinschmidt M; van Wüllen C; Marian CM
    J Chem Phys; 2015 Mar; 142(9):094301. PubMed ID: 25747075
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Synthetic control of excited-state properties in cyclometalated Ir(III) complexes using ancillary ligands.
    Li J; Djurovich PI; Alleyne BD; Yousufuddin M; Ho NN; Thomas JC; Peters JC; Bau R; Thompson ME
    Inorg Chem; 2005 Mar; 44(6):1713-27. PubMed ID: 15762698
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A theoretical analysis of the phosphorescence efficiencies of Cu(i) complexes.
    Zou LY; Cheng YX; Li Y; Li H; Zhang HX; Ren AM
    Dalton Trans; 2014 Aug; 43(29):11252-9. PubMed ID: 24853779
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Investigation of Conversion and Decay Processes in Thermally Activated Delayed Fluorescence Copper(I) Molecular Crystal: Theoretical Estimations from an ONIOM Approach Combined with the Tuned Range-Separated Density Functional Theory.
    Lv L; Yuan K; Zhu Y; Zuo G; Wang Y
    J Phys Chem A; 2019 Mar; 123(10):2080-2090. PubMed ID: 30802052
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Theoretical study of the substituent effect controlling the radiative and non-radiative decay processes of platinum(ii) complexes.
    Shen W; Zhang W; Zhu C
    Phys Chem Chem Phys; 2017 Aug; 19(34):23532-23540. PubMed ID: 28829465
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Quantum chemical interpretation of ultrafast luminescence decay and intersystem crossings in rhenium(I) carbonyl bipyridine complexes.
    Gourlaouen C; Eng J; Otsuka M; Gindensperger E; Daniel C
    J Chem Theory Comput; 2015 Jan; 11(1):99-110. PubMed ID: 26574208
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Quantitative calculations of the non-radiative rate of phosphorescent Ir(III) complexes.
    Zhou X; Powell BJ
    Phys Chem Chem Phys; 2020 Dec; 22(46):27348-27356. PubMed ID: 33231236
    [TBL] [Abstract][Full Text] [Related]  

  • 16. P∩N Bridged Cu(I) Dimers Featuring Both TADF and Phosphorescence. From Overview towards Detailed Case Study of the Excited Singlet and Triplet States.
    Hofbeck T; Niehaus TA; Fleck M; Monkowius U; Yersin H
    Molecules; 2021 Jun; 26(11):. PubMed ID: 34200044
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Exploring the Photodeactivation Pathways of Pt[O^N^C^N] Complexes: A Theoretical Perspective.
    Luo Y; Xu Y; Zhang W; Li M; He R; Shen W
    Chemphyschem; 2016 Jan; 17(1):69-77. PubMed ID: 26515923
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comprehensive Investigation into Luminescent Properties of Ir(III) Complexes: An Integrated Computational Study of Radiative and Nonradiative Decay Processes.
    Wang Y; Bao P; Wang J; Jia R; Bai FQ; Zhang HX
    Inorg Chem; 2018 Jun; 57(11):6561-6570. PubMed ID: 29792424
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The luminescence properties of heteroleptic [OsCl(CO)(N∩N)(P∩P)](+) complexes - radiative and non-radiative deactivation of the excited (3)*MLCT state.
    Kamecka A; Kapturkiewicz A
    Phys Chem Chem Phys; 2015 Sep; 17(36):23332-45. PubMed ID: 26287279
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The luminescence properties of the heteroleptic [Re(CO)3(N∩N)Cl] and [Re(CO)3(N∩N)(CH3CN)](+) complexes in view of the combined Marcus-Jortner and Mulliken-Hush formalism.
    Woźna A; Kapturkiewicz A
    Phys Chem Chem Phys; 2015 Nov; 17(45):30468-80. PubMed ID: 26510819
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.