These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

1112 related articles for article (PubMed ID: 29565290)

  • 21. Inflammation in diabetic retinopathy: possible roles in pathogenesis and potential implications for therapy.
    Tang L; Xu GT; Zhang JF
    Neural Regen Res; 2023 May; 18(5):976-982. PubMed ID: 36254977
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A potent Nrf2 activator, dh404, bolsters antioxidant capacity in glial cells and attenuates ischaemic retinopathy.
    Deliyanti D; Lee JY; Petratos S; Meyer CJ; Ward KW; Wilkinson-Berka JL; de Haan JB
    Clin Sci (Lond); 2016 Aug; 130(15):1375-87. PubMed ID: 27005782
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Neurovascular cross talk in diabetic retinopathy: Pathophysiological roles and therapeutic implications.
    Moran EP; Wang Z; Chen J; Sapieha P; Smith LE; Ma JX
    Am J Physiol Heart Circ Physiol; 2016 Sep; 311(3):H738-49. PubMed ID: 27473938
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Pathological Perturbations in Diabetic Retinopathy: Hyperglycemia, AGEs, Oxidative Stress and Inflammatory Pathways.
    Sahajpal NS; Goel RK; Chaubey A; Aurora R; Jain SK
    Curr Protein Pept Sci; 2019; 20(1):92-110. PubMed ID: 30264677
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Müller cells and diabetic retinopathy.
    Coughlin BA; Feenstra DJ; Mohr S
    Vision Res; 2017 Oct; 139():93-100. PubMed ID: 28866025
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Neuroinflammation in Retinitis Pigmentosa, Diabetic Retinopathy, and Age-Related Macular Degeneration: A Minireview.
    Massengill MT; Ahmed CM; Lewin AS; Ildefonso CJ
    Adv Exp Med Biol; 2018; 1074():185-191. PubMed ID: 29721943
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Mesenchymal marker expression is elevated in Müller cells exposed to high glucose and in animal models of diabetic retinopathy.
    Zhou T; Che D; Lan Y; Fang Z; Xie J; Gong H; Li C; Feng J; Hong H; Qi W; Ma C; Yang Z; Cai W; Zhong J; Ma J; Yang X; Gao G
    Oncotarget; 2017 Jan; 8(3):4582-4594. PubMed ID: 27999189
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Old and new drug targets in diabetic retinopathy: from biochemical changes to inflammation and neurodegeneration.
    Leal EC; Santiago AR; Ambrósio AF
    Curr Drug Targets CNS Neurol Disord; 2005 Aug; 4(4):421-34. PubMed ID: 16101558
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Neuroprotection by rat Müller glia against high glucose-induced neurodegeneration through a mechanism involving ERK1/2 activation.
    Matteucci A; Gaddini L; Villa M; Varano M; Parravano M; Monteleone V; Cavallo F; Leo L; Mallozzi C; Malchiodi-Albedi F; Pricci F
    Exp Eye Res; 2014 Aug; 125():20-9. PubMed ID: 24877742
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Diabetic Retinopathy: Vascular and Inflammatory Disease.
    Semeraro F; Cancarini A; dell'Omo R; Rezzola S; Romano MR; Costagliola C
    J Diabetes Res; 2015; 2015():582060. PubMed ID: 26137497
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Nrf2 Activation Is a Potential Therapeutic Approach to Attenuate Diabetic Retinopathy.
    Deliyanti D; Alrashdi SF; Tan SM; Meyer C; Ward KW; de Haan JB; Wilkinson-Berka JL
    Invest Ophthalmol Vis Sci; 2018 Feb; 59(2):815-825. PubMed ID: 29411009
    [TBL] [Abstract][Full Text] [Related]  

  • 32. [Cell biology of intraocular vascular diseases].
    Ishibashi T
    Nippon Ganka Gakkai Zasshi; 1999 Dec; 103(12):923-47. PubMed ID: 10643294
    [TBL] [Abstract][Full Text] [Related]  

  • 33. [To attach importance of basic research in Müller cell of diabetic retinopathy].
    Li X; Bai Y
    Zhonghua Yan Ke Za Zhi; 2015 May; 51(5):321-2. PubMed ID: 26311692
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Molecular Mechanisms Mediating Diabetic Retinal Neurodegeneration: Potential Research Avenues and Therapeutic Targets.
    Chakravarthy H; Devanathan V
    J Mol Neurosci; 2018 Nov; 66(3):445-461. PubMed ID: 30293228
    [TBL] [Abstract][Full Text] [Related]  

  • 35. IL-17A exacerbates diabetic retinopathy by impairing Müller cell function via Act1 signaling.
    Qiu AW; Bian Z; Mao PA; Liu QH
    Exp Mol Med; 2016 Dec; 48(12):e280. PubMed ID: 27980343
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Microglia and Inflammatory Responses in Diabetic Retinopathy.
    Kinuthia UM; Wolf A; Langmann T
    Front Immunol; 2020; 11():564077. PubMed ID: 33240260
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Is PPARG the key gene in diabetic retinopathy?
    Costa V; Ciccodicola A
    Br J Pharmacol; 2012 Jan; 165(1):1-3. PubMed ID: 21501146
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The peroxisome proliferator-activated receptor pan-agonist bezafibrate suppresses microvascular inflammatory responses of retinal endothelial cells and vascular endothelial growth factor production in retinal pigmented epithelial cells.
    Usui-Ouchi A; Ouchi Y; Ebihara N
    Int Immunopharmacol; 2017 Nov; 52():70-76. PubMed ID: 28866026
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Receptor for advanced glycation end product expression in experimental diabetic retinopathy.
    Wang Y; Vom Hagen F; Pfister F; Bierhaus A; Feng Y; Gans R; Hammes HP
    Ann N Y Acad Sci; 2008 Apr; 1126():42-5. PubMed ID: 18448794
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The role of inflammation in immune system of diabetic retinopathy: Molecular mechanisms, pathogenetic role and therapeutic implications.
    Yue T; Shi Y; Luo S; Weng J; Wu Y; Zheng X
    Front Immunol; 2022; 13():1055087. PubMed ID: 36582230
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 56.