These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 29565304)

  • 1. Tuning of Schottky Barrier Height at NiSi/Si Contact by Combining Dual Implantation of Boron and Aluminum and Microwave Annealing.
    Sun F; Li C; Fu C; Zhou X; Luo J; Zou W; Qiu ZJ; Wu D
    Materials (Basel); 2018 Mar; 11(4):. PubMed ID: 29565304
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Schottky Barrier Height Tuning via the Dopant Segregation Technique through Low-Temperature Microwave Annealing.
    Fu C; Zhou X; Wang Y; Xu P; Xu M; Wu D; Luo J; Zhao C; Zhang SL
    Materials (Basel); 2016 Apr; 9(5):. PubMed ID: 28773440
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Implementation of Ambipolar Polysilicon Thin-Film Transistors with Nickel Silicide Schottky Junctions by Low-Thermal-Budget Microwave Annealing.
    Min JG; Lee DH; Kim YU; Cho WJ
    Nanomaterials (Basel); 2022 Feb; 12(4):. PubMed ID: 35214957
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Scalability of Schottky barrier metal-oxide-semiconductor transistors.
    Jang M
    Nano Converg; 2016; 3(1):11. PubMed ID: 28191421
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Metal Silicidation in Conjunction with Dopant Segregation: A Promising Strategy for Fabricating High-Performance Silicon-Based Photoanodes.
    Li S; She G; Xu J; Zhang S; Zhang H; Mu L; Ge C; Jin K; Luo J; Shi W
    ACS Appl Mater Interfaces; 2020 Sep; 12(35):39092-39097. PubMed ID: 32805824
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A Study about Schottky Barrier Height and Ideality Factor in Thin Film Transistors with Metal/Zinc Oxide Nanoparticles Structures Aiming Flexible Electronics Application.
    Kaufmann IR; Zerey O; Meyers T; Reker J; Vidor F; Hilleringmann U
    Nanomaterials (Basel); 2021 Apr; 11(5):. PubMed ID: 33946278
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effective Schottky Barrier Height Lowering of Metal/n-Ge with a TiO
    Kim GS; Kim SW; Kim SH; Park J; Seo Y; Cho BJ; Shin C; Shim JH; Yu HY
    ACS Appl Mater Interfaces; 2016 Dec; 8(51):35419-35425. PubMed ID: 27977113
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Channel Length-Dependent Operation of Ambipolar Schottky-Barrier Transistors on a Single Si Nanowire.
    Park SJ; Jeon DY; Sessi V; Trommer J; Heinzig A; Mikolajick T; Kim GT; Weber WM
    ACS Appl Mater Interfaces; 2020 Sep; 12(39):43927-43932. PubMed ID: 32880433
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Electrical transport of bottom-up grown single-crystal Si(1-x)Ge(x) nanowire.
    Yang WF; Lee SJ; Liang GC; Whang SJ; Kwong DL
    Nanotechnology; 2008 Jun; 19(22):225203. PubMed ID: 21825755
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Schottky Barriers in Bilayer Phosphorene Transistors.
    Pan Y; Dan Y; Wang Y; Ye M; Zhang H; Quhe R; Zhang X; Li J; Guo W; Yang L; Lu J
    ACS Appl Mater Interfaces; 2017 Apr; 9(14):12694-12705. PubMed ID: 28322554
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of Microwave Annealing on the Interface Properties Between the Top Silicon and Buried Oxide Layers in Silicon-on-Insulator MOSFETs.
    Lee GY; Cho WJ
    J Nanosci Nanotechnol; 2019 Oct; 19(10):6043-6049. PubMed ID: 31026905
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Microwave Annealing for NiSiGe Schottky Junction on SiGe P-Channel.
    Lin YH; Tsai YH; Hsu CC; Luo GL; Lee YJ; Chien CH
    Materials (Basel); 2015 Nov; 8(11):7519-7523. PubMed ID: 28793654
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Improving Performances of In-Plane Transition-Metal Dichalcogenide Schottky Barrier Field-Effect Transistors.
    Fan ZQ; Jiang XW; Chen J; Luo JW
    ACS Appl Mater Interfaces; 2018 Jun; 10(22):19271-19277. PubMed ID: 29737827
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Schottky Barrier Height Engineering for Electrical Contacts of Multilayered MoS
    Kim GS; Kim SH; Park J; Han KH; Kim J; Yu HY
    ACS Nano; 2018 Jun; 12(6):6292-6300. PubMed ID: 29851473
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Controlling Polarity of MoTe
    Liu X; Islam A; Guo J; Feng PX
    ACS Nano; 2020 Feb; 14(2):1457-1467. PubMed ID: 31909988
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Multiple Schottky Barrier-Limited Field-Effect Transistors on a Single Silicon Nanowire with an Intrinsic Doping Gradient.
    Barreda JL; Keiper TD; Zhang M; Xiong P
    ACS Appl Mater Interfaces; 2017 Apr; 9(13):12046-12053. PubMed ID: 28274114
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Investigation of Thickness Dependence of Metal Layer in Al/Mo/4H-SiC Schottky Barrier Diodes.
    Lee S; Lee J; Kang TY; Kyoung S; Jung ES; Kim KH
    J Nanosci Nanotechnol; 2015 Nov; 15(11):9308-13. PubMed ID: 26726688
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Combining triboelectric nanogenerator with piezoelectric effect for optimizing Schottky barrier height modulation.
    Zhao L; Li H; Meng J; Zhang Y; Feng H; Wu Y; Li Z
    Sci Bull (Beijing); 2021 Jul; 66(14):1409-1418. PubMed ID: 36654367
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Electrical characterization of n/p-type nickel silicide/silicon junctions by Sb segregation.
    Jun M; Park Y; Hyun Y; Choi SJ; Zyung T; Jang M
    J Nanosci Nanotechnol; 2011 Aug; 11(8):7339-42. PubMed ID: 22103191
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Schottky Barrier Height Modulation Using Interface Characteristics of MoS
    Kim SH; Han KH; Kim GS; Kim SG; Kim J; Yu HY
    ACS Appl Mater Interfaces; 2019 Feb; 11(6):6230-6237. PubMed ID: 30663311
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.