BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

261 related articles for article (PubMed ID: 29565595)

  • 1. Extending the Compatibility of the SP3 Paramagnetic Bead Processing Approach for Proteomics.
    Moggridge S; Sorensen PH; Morin GB; Hughes CS
    J Proteome Res; 2018 Apr; 17(4):1730-1740. PubMed ID: 29565595
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Single-pot, solid-phase-enhanced sample preparation for proteomics experiments.
    Hughes CS; Moggridge S; Müller T; Sorensen PH; Morin GB; Krijgsveld J
    Nat Protoc; 2019 Jan; 14(1):68-85. PubMed ID: 30464214
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evaluation of FASP, SP3, and iST Protocols for Proteomic Sample Preparation in the Low Microgram Range.
    Sielaff M; Kuharev J; Bohn T; Hahlbrock J; Bopp T; Tenzer S; Distler U
    J Proteome Res; 2017 Nov; 16(11):4060-4072. PubMed ID: 28948796
    [TBL] [Abstract][Full Text] [Related]  

  • 4. SP3-FAIMS-Enabled High-Throughput Quantitative Profiling of the Cysteinome.
    Desai HS; Yan T; Backus KM
    Curr Protoc; 2022 Jul; 2(7):e492. PubMed ID: 35895291
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Solvent Precipitation SP3 (SP4) Enhances Recovery for Proteomics Sample Preparation without Magnetic Beads.
    Johnston HE; Yadav K; Kirkpatrick JM; Biggs GS; Oxley D; Kramer HB; Samant RS
    Anal Chem; 2022 Jul; 94(29):10320-10328. PubMed ID: 35848328
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ultrasensitive proteome analysis using paramagnetic bead technology.
    Hughes CS; Foehr S; Garfield DA; Furlong EE; Steinmetz LM; Krijgsveld J
    Mol Syst Biol; 2014 Oct; 10(10):757. PubMed ID: 25358341
    [TBL] [Abstract][Full Text] [Related]  

  • 7. SP3 Protocol for Proteomic Plant Sample Preparation Prior LC-MS/MS.
    Mikulášek K; Konečná H; Potěšil D; Holánková R; Havliš J; Zdráhal Z
    Front Plant Sci; 2021; 12():635550. PubMed ID: 33777071
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Carboxylate-Modified Magnetic Bead (CMMB)-Based Isopropanol Gradient Peptide Fractionation (CIF) Enables Rapid and Robust Off-Line Peptide Mixture Fractionation in Bottom-Up Proteomics.
    Deng W; Sha J; Plath K; Wohlschlegel JA
    Mol Cell Proteomics; 2021; 20():100039. PubMed ID: 33476790
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A Standardized and Reproducible Proteomics Protocol for Bottom-Up Quantitative Analysis of Protein Samples Using SP3 and Mass Spectrometry.
    Hughes CS; Sorensen PH; Morin GB
    Methods Mol Biol; 2019; 1959():65-87. PubMed ID: 30852816
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Miniaturized sample preparation on a digital microfluidics device for sensitive bottom-up microproteomics of mammalian cells using magnetic beads and mass spectrometry-compatible surfactants.
    Leipert J; Tholey A
    Lab Chip; 2019 Oct; 19(20):3490-3498. PubMed ID: 31531506
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Automated sample preparation with SP3 for low-input clinical proteomics.
    Müller T; Kalxdorf M; Longuespée R; Kazdal DN; Stenzinger A; Krijgsveld J
    Mol Syst Biol; 2020 Jan; 16(1):e9111. PubMed ID: 32129943
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Universal Solid-Phase Protein Preparation (USP
    Dagley LF; Infusini G; Larsen RH; Sandow JJ; Webb AI
    J Proteome Res; 2019 Jul; 18(7):2915-2924. PubMed ID: 31137935
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparing Efficiency of Lysis Buffer Solutions and Sample Preparation Methods for Liquid Chromatography-Mass Spectrometry Analysis of Human Cells and Plasma.
    Neset L; Takayidza G; Berven FS; Hernandez-Valladares M
    Molecules; 2022 May; 27(11):. PubMed ID: 35684327
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Preparation of proteins and peptides for mass spectrometry analysis in a bottom-up proteomics workflow.
    Gundry RL; White MY; Murray CI; Kane LA; Fu Q; Stanley BA; Van Eyk JE
    Curr Protoc Mol Biol; 2009 Oct; Chapter 10():Unit10.25. PubMed ID: 19816929
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A Fast and Economical Sample Preparation Protocol for Interaction Proteomics Analysis.
    Gonzalez-Lozano MA; Koopmans F; Paliukhovich I; Smit AB; Li KW
    Proteomics; 2019 May; 19(9):e1900027. PubMed ID: 30864274
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Label-Free Proteomics of Quantity-Limited Samples Using Ion Mobility-Assisted Data-Independent Acquisition Mass Spectrometry.
    Distler U; Sielaff M; Tenzer S
    Methods Mol Biol; 2021; 2228():327-339. PubMed ID: 33950501
    [TBL] [Abstract][Full Text] [Related]  

  • 17. SP3-FAIMS Chemoproteomics for High-Coverage Profiling of the Human Cysteinome*.
    Yan T; Desai HS; Boatner LM; Yen SL; Cao J; Palafox MF; Jami-Alahmadi Y; Backus KM
    Chembiochem; 2021 May; 22(10):1841-1851. PubMed ID: 33442901
    [TBL] [Abstract][Full Text] [Related]  

  • 18. In Search of a Universal Method: A Comparative Survey of Bottom-Up Proteomics Sample Preparation Methods.
    Varnavides G; Madern M; Anrather D; Hartl N; Reiter W; Hartl M
    J Proteome Res; 2022 Oct; 21(10):2397-2411. PubMed ID: 36006919
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Study of a novel agent for TCA precipitated proteins washing - comprehensive insights into the role of ethanol/HCl on molten globule state by multi-spectroscopic analyses.
    Eddhif B; Lange J; Guignard N; Batonneau Y; Clarhaut J; Papot S; Geffroy-Rodier C; Poinot P
    J Proteomics; 2018 Feb; 173():77-88. PubMed ID: 29191748
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Quick 96FASP for high throughput quantitative proteome analysis.
    Yu Y; Bekele S; Pieper R
    J Proteomics; 2017 Aug; 166():1-7. PubMed ID: 28669814
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.