BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 29565775)

  • 1. The Natural-CCD Algorithm, a Novel Method to Solve the Inverse Kinematics of Hyper-redundant and Soft Robots.
    Martín A; Barrientos A; Del Cerro J
    Soft Robot; 2018 Jun; 5(3):242-257. PubMed ID: 29565775
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A Geometric Approach towards Inverse Kinematics of Soft Extensible Pneumatic Actuators Intended for Trajectory Tracking.
    Keyvanara M; Goshtasbi A; Kuling IA
    Sensors (Basel); 2023 Aug; 23(15):. PubMed ID: 37571667
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Kinematics and the implementation of an elephant's trunk manipulator and other continuum style robots.
    Hannan MW; Walker ID
    J Robot Syst; 2003 Feb; 20(2):45-63. PubMed ID: 14983840
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An Origami Continuum Robot Capable of Precise Motion Through Torsionally Stiff Body and Smooth Inverse Kinematics.
    Santoso J; Onal CD
    Soft Robot; 2021 Aug; 8(4):371-386. PubMed ID: 32721270
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Finite Element Method-Based Kinematics and Closed-Loop Control of Soft, Continuum Manipulators.
    Bieze TM; Largilliere F; Kruszewski A; Zhang Z; Merzouki R; Duriez C
    Soft Robot; 2018 Jun; 5(3):348-364. PubMed ID: 29658827
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Kinematic control of redundant robots and the motion optimizability measure.
    Li L; Gruver WA; Zhang Q; Yang Z
    IEEE Trans Syst Man Cybern B Cybern; 2001; 31(1):155-60. PubMed ID: 18244778
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An Analytical Solution for Inverse Kinematics of SSRMS-Type Redundant Manipulators.
    Qin L; Wei X; Lv L; Han L; Fang G
    Sensors (Basel); 2023 Jun; 23(12):. PubMed ID: 37420579
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Non-iterative geometric approach for inverse kinematics of redundant lead-module in a radiosurgical snake-like robot.
    Omisore OM; Han S; Ren L; Zhang N; Ivanov K; Elazab A; Wang L
    Biomed Eng Online; 2017 Aug; 16(1):93. PubMed ID: 28764713
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A reinforcement learning enhanced pseudo-inverse approach to self-collision avoidance of redundant robots.
    Hong T; Li W; Huang K
    Front Neurorobot; 2024; 18():1375309. PubMed ID: 38606052
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An Improved Weighted Gradient Projection Method for Inverse Kinematics of Redundant Surgical Manipulators.
    Zhang X; Fan B; Wang C; Cheng X
    Sensors (Basel); 2021 Nov; 21(21):. PubMed ID: 34770667
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A Master-Slave control system with workspaces isomerism for teleoperation of a snake robot.
    Lingxue Ren ; Omisore OM; Shipeng Han ; Lei Wang
    Annu Int Conf IEEE Eng Med Biol Soc; 2017 Jul; 2017():4343-4346. PubMed ID: 29060858
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Inverse kinematics for cooperative mobile manipulators based on self-adaptive differential evolution.
    Hernandez-Barragan J; Lopez-Franco C; Arana-Daniel N; Alanis AY
    PeerJ Comput Sci; 2021; 7():e419. PubMed ID: 33817055
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Design of a Hyper-Redundant Robot and Teleoperation Using Mixed Reality for Inspection Tasks.
    Martín-Barrio A; Roldán-Gómez JJ; Rodríguez I; Del Cerro J; Barrientos A
    Sensors (Basel); 2020 Apr; 20(8):. PubMed ID: 32290619
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Learning Closed Loop Kinematic Controllers for Continuum Manipulators in Unstructured Environments.
    George Thuruthel T; Falotico E; Manti M; Pratesi A; Cianchetti M; Laschi C
    Soft Robot; 2017 Sep; 4(3):285-296. PubMed ID: 29182085
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cerebellum-inspired neural network solution of the inverse kinematics problem.
    Asadi-Eydivand M; Ebadzadeh MM; Solati-Hashjin M; Darlot C; Abu Osman NA
    Biol Cybern; 2015 Dec; 109(6):561-74. PubMed ID: 26438095
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Energy-efficient and damage-recovery slithering gait design for a snake-like robot based on reinforcement learning and inverse reinforcement learning.
    Bing Z; Lemke C; Cheng L; Huang K; Knoll A
    Neural Netw; 2020 Sep; 129():323-333. PubMed ID: 32593929
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Deeply-learnt damped least-squares (DL-DLS) method for inverse kinematics of snake-like robots.
    Omisore OM; Han S; Ren L; Elazab A; Hui L; Abdelhamid T; Azeez NA; Wang L
    Neural Netw; 2018 Nov; 107():34-47. PubMed ID: 30241968
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Adaptive Online Learning and Robust 3-D Shape Servoing of Continuum and Soft Robots in Unstructured Environments.
    Lu Y; Chen W; Lu B; Zhou J; Chen Z; Dou Q; Liu YH
    Soft Robot; 2024 Apr; 11(2):320-337. PubMed ID: 38324014
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Solution of Inverse Kinematics for 6R Robot Manipulators With Offset Wrist Based on Geometric Algebra.
    Fu Z; Yang W; Yang Z
    J Mech Robot; 2013 Aug; 5(3):310081-310087. PubMed ID: 23918347
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 8.