BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

244 related articles for article (PubMed ID: 29565900)

  • 1. Mapping in vivo target interaction profiles of covalent inhibitors using chemical proteomics with label-free quantification.
    van Rooden EJ; Florea BI; Deng H; Baggelaar MP; van Esbroeck ACM; Zhou J; Overkleeft HS; van der Stelt M
    Nat Protoc; 2018 Apr; 13(4):752-767. PubMed ID: 29565900
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Advances in applications of activity-based chemical probes in the characterization of amino acid reactivities].
    Li J; Wang G; Ye M; Qin H
    Se Pu; 2023 Jan; 41(1):14-23. PubMed ID: 36633073
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Experimental Null Method to Guide the Development of Technical Procedures and to Control False-Positive Discovery in Quantitative Proteomics.
    Shen X; Hu Q; Li J; Wang J; Qu J
    J Proteome Res; 2015 Oct; 14(10):4147-57. PubMed ID: 26051676
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Isotope coded protein label quantification of serum proteins--comparison with the label-free LC-MS and validation using the MRM approach.
    Turtoi A; Mazzucchelli GD; De Pauw E
    Talanta; 2010 Feb; 80(4):1487-95. PubMed ID: 20082806
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Drug Target Identification Using an iTRAQ-Based Quantitative Chemical Proteomics Approach-Based on a Target Profiling Study of Andrographolide.
    Wang J; Wong YK; Zhang J; Lee YM; Hua ZC; Shen HM; Lin Q
    Methods Enzymol; 2017; 586():291-309. PubMed ID: 28137568
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Systematic evaluation of label-free and super-SILAC quantification for proteome expression analysis.
    Tebbe A; Klammer M; Sighart S; Schaab C; Daub H
    Rapid Commun Mass Spectrom; 2015 May; 29(9):795-801. PubMed ID: 26377007
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Target identification with quantitative activity based protein profiling (ABPP).
    Chen X; Wong YK; Wang J; Zhang J; Lee YM; Shen HM; Lin Q; Hua ZC
    Proteomics; 2017 Feb; 17(3-4):. PubMed ID: 27723264
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Label-free quantification in ion mobility-enhanced data-independent acquisition proteomics.
    Distler U; Kuharev J; Navarro P; Tenzer S
    Nat Protoc; 2016 Apr; 11(4):795-812. PubMed ID: 27010757
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biomedical applications of ion mobility-enhanced data-independent acquisition-based label-free quantitative proteomics.
    Distler U; Kuharev J; Tenzer S
    Expert Rev Proteomics; 2014 Dec; 11(6):675-84. PubMed ID: 25327648
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Quantitative profile of five murine core proteomes using label-free functional proteomics.
    Cutillas PR; Vanhaesebroeck B
    Mol Cell Proteomics; 2007 Sep; 6(9):1560-73. PubMed ID: 17565973
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Quantitative proteomics of mouse brain and specific protein-interaction studies using stable isotope labeling.
    Sato T; Ishihama Y; Oda Y
    Methods Mol Biol; 2007; 359():53-70. PubMed ID: 17484110
    [TBL] [Abstract][Full Text] [Related]  

  • 12. In Situ Click Reaction Coupled with Quantitative Proteomics for Identifying Protein Targets of Catechol Estrogens.
    Liang HC; Liu YC; Chen H; Ku MC; Do QT; Wang CY; Tzeng SF; Chen SH
    J Proteome Res; 2018 Aug; 17(8):2590-2599. PubMed ID: 29897771
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Computational methods for the comparative quantification of proteins in label-free LCn-MS experiments.
    Wong JW; Sullivan MJ; Cagney G
    Brief Bioinform; 2008 Mar; 9(2):156-65. PubMed ID: 17905794
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An overview of label-free quantitation methods in proteomics by mass spectrometry.
    Wong JW; Cagney G
    Methods Mol Biol; 2010; 604():273-83. PubMed ID: 20013377
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Inhibitor Discovery by Convolution ABPP.
    Chandrasekar B; Hong TN; van der Hoorn RA
    Methods Mol Biol; 2017; 1491():47-56. PubMed ID: 27778280
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Label-free protein quantification using LC-coupled ion trap or FT mass spectrometry: Reproducibility, linearity, and application with complex proteomes.
    Wang G; Wu WW; Zeng W; Chou CL; Shen RF
    J Proteome Res; 2006 May; 5(5):1214-23. PubMed ID: 16674111
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Label-Free Identification and Quantification of SUMO Target Proteins.
    Hendriks IA; Vertegaal AC
    Methods Mol Biol; 2016; 1475():171-93. PubMed ID: 27631806
    [TBL] [Abstract][Full Text] [Related]  

  • 18. LC-MS/MS-based targeted proteomics quantitatively detects the interaction between p53 and MDM2 in breast cancer.
    Zhang W; Zhong T; Chen Y
    J Proteomics; 2017 Jan; 152():172-180. PubMed ID: 27826076
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Global Portrait of Protein Targets of Metabolites of the Neurotoxic Compound BIA 10-2474.
    Huang Z; Ogasawara D; Seneviratne UI; Cognetta AB; Am Ende CW; Nason DM; Lapham K; Litchfield J; Johnson DS; Cravatt BF
    ACS Chem Biol; 2019 Feb; 14(2):192-197. PubMed ID: 30702848
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Quantitative protein profiling by mass spectrometry using label-free proteomics.
    Haqqani AS; Kelly JF; Stanimirovic DB
    Methods Mol Biol; 2008; 439():241-56. PubMed ID: 18370108
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.