BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

221 related articles for article (PubMed ID: 29565969)

  • 21. Rbm24 controls poly(A) tail length and translation efficiency of
    Shao M; Lu T; Zhang C; Zhang YZ; Kong SH; Shi DL
    Proc Natl Acad Sci U S A; 2020 Mar; 117(13):7245-7254. PubMed ID: 32170011
    [TBL] [Abstract][Full Text] [Related]  

  • 22. CELF1 Mediates Connexin 43 mRNA Degradation in Dilated Cardiomyopathy.
    Chang KT; Cheng CF; King PC; Liu SY; Wang GS
    Circ Res; 2017 Oct; 121(10):1140-1152. PubMed ID: 28874395
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Identification of Targets of CUG-BP, Elav-Like Family Member 1 (CELF1) Regulation in Embryonic Heart Muscle.
    Blech-Hermoni Y; Dasgupta T; Coram RJ; Ladd AN
    PLoS One; 2016; 11(2):e0149061. PubMed ID: 26866591
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The C-terminal domain of the Xenopus cyclin-dependent kinase inhibitor, p27Xic1, is both necessary and sufficient for phosphorylation-independent proteolysis.
    Chuang LC; Zhu XN; Herrera CR; Tseng HM; Pfleger CM; Block K; Yew PR
    J Biol Chem; 2005 Oct; 280(42):35290-8. PubMed ID: 16118210
    [TBL] [Abstract][Full Text] [Related]  

  • 25. HSF4 regulates DLAD expression and promotes lens de-nucleation.
    Cui X; Wang L; Zhang J; Du R; Liao S; Li D; Li C; Ke T; Li DW; Huang H; Yin Z; Tang Z; Liu M
    Biochim Biophys Acta; 2013 Aug; 1832(8):1167-72. PubMed ID: 23507146
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Phosphorylation of p27(KIP1) in lens epithelial cells after extraction of fiber cells.
    Kase S; Yoshida K; Jin XH; Koyama Y; Kitaichi N; Ohgami K; Shiratori K; Ilieva I; Ohno S
    Int J Mol Med; 2006 Dec; 18(6):1187-91. PubMed ID: 17089025
    [TBL] [Abstract][Full Text] [Related]  

  • 27. CUG-binding protein represses translation of p27Kip1 mRNA through its internal ribosomal entry site.
    Zheng Y; Miskimins WK
    RNA Biol; 2011; 8(3):365-71. PubMed ID: 21508681
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Increased nuclear but not cytoplasmic activities of CELF1 protein leads to muscle wasting.
    Cox DC; Guan X; Xia Z; Cooper TA
    Hum Mol Genet; 2020 Jun; 29(10):1729-1744. PubMed ID: 32412585
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Deficiency of heat shock factor 4 promotes lens epithelial cell senescence through upregulating p21
    Cui X; Du C; Wan S; Wu D; Yan L; Zhang J; Li J; Li H; Yang Z; Zhang H; Zhang J; Mu H; Zhang F; Peng X; Liu M; Hu Y
    Biochim Biophys Acta Mol Basis Dis; 2021 Nov; 1867(11):166233. PubMed ID: 34339841
    [TBL] [Abstract][Full Text] [Related]  

  • 30. N-myc regulates growth and fiber cell differentiation in lens development.
    Cavalheiro GR; Matos-Rodrigues GE; Zhao Y; Gomes AL; Anand D; Predes D; de Lima S; Abreu JG; Zheng D; Lachke SA; Cvekl A; Martins RAP
    Dev Biol; 2017 Sep; 429(1):105-117. PubMed ID: 28716713
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Neonatal cardiac dysfunction and transcriptome changes caused by the absence of Celf1.
    Giudice J; Xia Z; Li W; Cooper TA
    Sci Rep; 2016 Oct; 6():35550. PubMed ID: 27759042
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Chromatin degradation in differentiating fiber cells of the eye lens.
    Bassnett S; Mataic D
    J Cell Biol; 1997 Apr; 137(1):37-49. PubMed ID: 9105035
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Distribution of alternative untranslated regions within the mRNA of the CELF1 splicing factor affects its expression.
    Kajdasz A; Niewiadomska D; Sekrecki M; Sobczak K
    Sci Rep; 2022 Jan; 12(1):190. PubMed ID: 34996980
    [TBL] [Abstract][Full Text] [Related]  

  • 34. HuB/C/D, nPTB, REST4, and miR-124 regulators of neuronal cell identity are also utilized in the lens.
    Bitel CL; Perrone-Bizzozero NI; Frederikse PH
    Mol Vis; 2010 Nov; 16():2301-16. PubMed ID: 21139978
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Diversity and conservation of CELF1 and CELF2 RNA and protein expression patterns during embryonic development.
    Blech-Hermoni Y; Stillwagon SJ; Ladd AN
    Dev Dyn; 2013 Jun; 242(6):767-77. PubMed ID: 23468433
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Disappearance of p27(KIP1) and increase in proliferation of the lens cells after extraction of most of the fiber cells of the lens.
    Kase S; Yoshida K; Ikeda H; Harada T; Harada C; Imaki J; Ohgami K; Shiratori K; Nakayama KI; Nakayama K; Ohno S
    Curr Eye Res; 2005 Jun; 30(6):437-42. PubMed ID: 16020276
    [TBL] [Abstract][Full Text] [Related]  

  • 37. CELF1 is Up-Regulated in Glioma and Promotes Glioma Cell Proliferation by Suppression of CDKN1B.
    Xia L; Sun C; Li Q; Feng F; Qiao E; Jiang L; Wu B; Ge M
    Int J Biol Sci; 2015; 11(11):1314-24. PubMed ID: 26535026
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Competition between RNA-binding proteins CELF1 and HuR modulates MYC translation and intestinal epithelium renewal.
    Liu L; Ouyang M; Rao JN; Zou T; Xiao L; Chung HK; Wu J; Donahue JM; Gorospe M; Wang JY
    Mol Biol Cell; 2015 May; 26(10):1797-810. PubMed ID: 25808495
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Loss of the small heat shock protein αA-crystallin does not lead to detectable defects in early zebrafish lens development.
    Posner M; Skiba J; Brown M; Liang JO; Nussbaum J; Prior H
    Exp Eye Res; 2013 Nov; 116():227-33. PubMed ID: 24076322
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Novel mitochondrial derived Nuclear Excisosome degrades nuclei during differentiation of prosimian Galago (bush baby) monkey lenses.
    Costello MJ; Gilliland KO; Mohamed A; Schey KL; Johnsen S; Brennan LA; Kantorow M
    PLoS One; 2020; 15(11):e0241631. PubMed ID: 33180800
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.