These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 29566013)

  • 1. Avian learning favors colorful, not bright, signals.
    Lawrence JP; Noonan BP
    PLoS One; 2018; 13(3):e0194279. PubMed ID: 29566013
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Weak warning signals can persist in the absence of gene flow.
    Lawrence JP; Rojas B; Fouquet A; Mappes J; Blanchette A; Saporito RA; Bosque RJ; Courtois EA; Noonan BP
    Proc Natl Acad Sci U S A; 2019 Sep; 116(38):19037-19045. PubMed ID: 31481623
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The effects of predator learning, forgetting, and recognition errors on the evolution of warning coloration.
    Servedio MR
    Evolution; 2000 Jun; 54(3):751-63. PubMed ID: 10937250
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Aposematic colouration enhances memory formation in domestic chicks trained in a weak passive avoidance learning paradigm.
    Johnston AN; Burne TH
    Brain Res Bull; 2008 Jun; 76(3):313-6. PubMed ID: 18498948
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Avian predators taste-reject aposematic prey on the basis of their chemical defence.
    Skelhorn J; Rowe C
    Biol Lett; 2006 Sep; 2(3):348-50. PubMed ID: 17148400
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fruit or aposematic insect? Context-dependent colour preferences in domestic chicks.
    Gamberale-Stille G; Tullberg BS
    Proc Biol Sci; 2001 Dec; 268(1485):2525-9. PubMed ID: 11749705
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Predators' toxin burdens influence their strategic decisions to eat toxic prey.
    Skelhorn J; Rowe C
    Curr Biol; 2007 Sep; 17(17):1479-83. PubMed ID: 17716896
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Pyrazine odour makes visually conspicuous prey aversive.
    Lindström L; Rowe C; Guilford T
    Proc Biol Sci; 2001 Jan; 268(1463):159-62. PubMed ID: 11209885
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Automimicry destabilizes aposematism: predator sample-and-reject behaviour may provide a solution.
    Gamberale-Stille G; Guilford T
    Proc Biol Sci; 2004 Dec; 271(1557):2621-5. PubMed ID: 15615689
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Birds learn to avoid aposematic prey by using the appearance of host plants.
    McLellan CF; Scott-Samuel NE; Cuthill IC
    Curr Biol; 2021 Dec; 31(23):5364-5369.e4. PubMed ID: 34624210
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Frequency-dependent taste-rejection by avian predation may select for defence chemical polymorphisms in aposematic prey.
    Skelhorn J; Rowe C
    Biol Lett; 2005 Dec; 1(4):500-3. PubMed ID: 17148243
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Avian predators attack aposematic prey more forcefully when they are part of an aggregation.
    Skelhorn J; Ruxton GD
    Biol Lett; 2006 Dec; 2(4):488-90. PubMed ID: 17148269
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Predator experience on cryptic prey affects the survival of conspicuous aposematic prey.
    Lindström L; Alatalo RV; Lyytinen A; Mappes J
    Proc Biol Sci; 2001 Feb; 268(1465):357-61. PubMed ID: 11270431
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Sound improves visual discrimination learning in avian predators.
    Rowe C
    Proc Biol Sci; 2002 Jul; 269(1498):1353-7. PubMed ID: 12079658
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evidence for a peak-shift in predator generalization among aposematic prey.
    Gamberale G; Tullberg BS
    Proc Biol Sci; 1996 Oct; 263(1375):1329-34. PubMed ID: 8914330
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Social transmission of avoidance among predators facilitates the spread of novel prey.
    Thorogood R; Kokko H; Mappes J
    Nat Ecol Evol; 2018 Feb; 2(2):254-261. PubMed ID: 29255302
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Predator mixes and the conspicuousness of aposematic signals.
    Endler JA; Mappes J
    Am Nat; 2004 Apr; 163(4):532-47. PubMed ID: 15122501
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Warning signal brightness variation: sexual selection may work under the radar of natural selection in populations of a polytypic poison frog.
    Crothers LR; Cummings ME
    Am Nat; 2013 May; 181(5):E116-24. PubMed ID: 23594556
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Lack of neophobic responses to color in a jumping spider that uses color cues when foraging (Habronattus pyrrithrix).
    Vickers ME; Heisey ML; Taylor LA
    PLoS One; 2021; 16(7):e0254865. PubMed ID: 34324526
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Variation in predator response to short-wavelength warning coloration.
    Pegram KV; Fankhauser K; Rutowski RL
    Behav Processes; 2021 Jun; 187():104377. PubMed ID: 33771606
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.