These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

252 related articles for article (PubMed ID: 29566210)

  • 21. Construction of a naturally occurring radioactive material project in the BeAAT hazardous waste facilities.
    Abuahmad H
    Ann ICRP; 2015 Jun; 44(1 Suppl):214-20. PubMed ID: 25816275
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Dose Assessment for Technologically Enhanced Naturally Occurring Radioactive Materials Disposal in Landfills.
    Caffrey EA; Rood AS; Grogan HA; Till JE; Herman K
    Health Phys; 2021 Sep; 121(3):209-224. PubMed ID: 34225352
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Environmental risks of radioactive discharges from a low-level radioactive waste disposal site at Dessel, Belgium.
    Batlle JVI; Sweeck L; Wannijn J; Vandenhove H
    J Environ Radioact; 2016 Oct; 162-163():263-278. PubMed ID: 27299850
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Naturally occurring radioactive material (NORM) from a former phosphoric acid processing plant.
    Beddow H; Black S; Read D
    J Environ Radioact; 2006; 86(3):289-312. PubMed ID: 16303218
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Experience in radiological risk assessment of a surface waste disposal facility in Chişinău, Moldova.
    Xu S; Kłos R; Dverstorp B; Sandberg V; Stark K; Gisca I
    J Radiol Prot; 2022 Jan; 42(1):. PubMed ID: 34492638
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Characterization of the TE-NORM waste associated with oil and natural gas production in Abu Rudeis, Egypt.
    El Afifi EM; Awwad NS
    J Environ Radioact; 2005; 82(1):7-19. PubMed ID: 15829333
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Effect of precipitation, sorption and stable of isotope on maximum release rates of radionuclides from engineered barrier system (EBS) in deep repository.
    Malekifarsani A; Skachek MA
    J Environ Radioact; 2009 Oct; 100(10):807-14. PubMed ID: 19027996
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Mass balance analysis on the behavior of major elements disposed at a waste landfill site.
    Chun SK
    Waste Manag; 2018 Jan; 71():233-243. PubMed ID: 29103895
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Radiological risk assessment and biosphere modelling for radioactive waste disposal in Switzerland.
    Brennwald MS; van Dorp F
    J Environ Radioact; 2009 Dec; 100(12):1058-61. PubMed ID: 19560845
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Pennsylvania's technologically enhanced, naturally occurring radioactive material experiences and studies of the oil and gas industry.
    Allard DJ
    Health Phys; 2015 Feb; 108(2):178. PubMed ID: 25551500
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Radioactive waste disposal implications of extending Part IIA of the Environmental Protection Act to cover radioactively contaminated land.
    Nancarrow DJ; White MM
    J Radiol Prot; 2004 Mar; 24(1):61-73. PubMed ID: 15080549
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Assessment of Radiological Hazard of Radioactive Waste Using Effective or Organ Doses: How This May Affect Final Waste Disposal.
    Ivanov VK; Chekin SY; Lopatkin AV; Menyajlo AN; Maksioutov MA; Tumanov KA; Kashcheeva PV; Lovachev SS
    Health Phys; 2022 Mar; 122(3):402-408. PubMed ID: 34966086
    [TBL] [Abstract][Full Text] [Related]  

  • 33. CCA-treated wood disposed in landfills and life-cycle trade-offs with waste-to-energy and MSW landfill disposal.
    Jambeck J; Weitz K; Solo-Gabriele H; Townsend T; Thorneloe S
    Waste Manag; 2007; 27(8):S21-8. PubMed ID: 17416510
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Disposal of low-level radioactive wastes.
    Hendee WR
    Semin Nucl Med; 1986 Jul; 16(3):184-6. PubMed ID: 3749914
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Variance in State Protection from Exposure to NORM and TENORM Wastes Generated During Unconventional Oil and Gas Operations: Where We Are and Where We Need to Go.
    Ann Glass Geltman E; LeClair N
    New Solut; 2018 Aug; 28(2):240-261. PubMed ID: 29409383
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Radiological impact of natural radionuclides from soils of Salamanca, Mexico.
    Mandujano-García CD; Sosa M; Mantero J; Costilla R; Manjón G; García-Tenorio R
    Appl Radiat Isot; 2016 Nov; 117():91-95. PubMed ID: 26867693
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A New Storage Facility for Institutional Radioactive Wastes at IPEN.
    Vicente R; Dellamano JC; Potiens AJ
    Health Phys; 2015 Aug; 109(2 Suppl 2):S148-55. PubMed ID: 26102323
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Application of inert wastes in the construction, operation and closure of landfills: Calculation tool.
    Colomer Mendoza FJ; Esteban Altabella J; Gallardo Izquierdo A
    Waste Manag; 2017 Jan; 59():276-285. PubMed ID: 27816471
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Potential environmental and regulatory implications of naturally occurring radioactive materials (NORM).
    Paschoa AS
    Appl Radiat Isot; 1998 Mar; 49(3):189-96. PubMed ID: 9451772
    [TBL] [Abstract][Full Text] [Related]  

  • 40. INDIVIDUAL DOSIMETRY IN DISPOSAL REPOSITORY OF HEAT-GENERATING NUCLEAR WASTE.
    Pang B; Saurí Suárez H; Becker F
    Radiat Prot Dosimetry; 2016 Sep; 170(1-4):387-92. PubMed ID: 27150513
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.