BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

218 related articles for article (PubMed ID: 29566255)

  • 1. The bZip transcription factor HY5 mediates CRY1a-induced anthocyanin biosynthesis in tomato.
    Liu CC; Chi C; Jin LJ; Zhu J; Yu JQ; Zhou YH
    Plant Cell Environ; 2018 Aug; 41(8):1762-1775. PubMed ID: 29566255
    [TBL] [Abstract][Full Text] [Related]  

  • 2. ELONGATED HYPOCOTYL 5 mediates blue light-induced starch degradation in tomato.
    Dong H; Hu C; Liu C; Wang J; Zhou Y; Yu J
    J Exp Bot; 2021 Mar; 72(7):2627-2641. PubMed ID: 33377142
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Identification of Candidate HY5-Dependent and -Independent Regulators of Anthocyanin Biosynthesis in Tomato.
    Qiu Z; Wang H; Li D; Yu B; Hui Q; Yan S; Huang Z; Cui X; Cao B
    Plant Cell Physiol; 2019 Mar; 60(3):643-656. PubMed ID: 30597099
    [TBL] [Abstract][Full Text] [Related]  

  • 4. SmBICs Inhibit Anthocyanin Biosynthesis in Eggplant (Solanum melongena L.).
    He Y; Li D; Li S; Liu Y; Chen H
    Plant Cell Physiol; 2021 Oct; 62(6):1001-1011. PubMed ID: 34043001
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Omics Analysis Unveils the Pathway Involved in the Anthocyanin Biosynthesis in Tomato Seedling and Fruits.
    He R; Liu K; Zhang S; Ju J; Hu Y; Li Y; Liu X; Liu H
    Int J Mol Sci; 2023 May; 24(10):. PubMed ID: 37240046
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cryptochrome 1a of tomato mediates long-distance signaling of soil water deficit.
    D'Amico-Damião V; Dodd IC; Oliveira R; Lúcio JCB; Rossatto DR; Carvalho RF
    Plant Sci; 2021 Feb; 303():110763. PubMed ID: 33487348
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Arabidopsis CAPRICE (MYB) and GLABRA3 (bHLH) control tomato (Solanum lycopersicum) anthocyanin biosynthesis.
    Wada T; Kunihiro A; Tominaga-Wada R
    PLoS One; 2014; 9(9):e109093. PubMed ID: 25268379
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Tomato CRY1a plays a critical role in the regulation of phytohormone homeostasis, plant development, and carotenoid metabolism in fruits.
    Liu CC; Ahammed GJ; Wang GT; Xu CJ; Chen KS; Zhou YH; Yu JQ
    Plant Cell Environ; 2018 Feb; 41(2):354-366. PubMed ID: 29046014
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Manipulation of the blue light photoreceptor cryptochrome 2 in tomato affects vegetative development, flowering time, and fruit antioxidant content.
    Giliberto L; Perrotta G; Pallara P; Weller JL; Fraser PD; Bramley PM; Fiore A; Tavazza M; Giuliano G
    Plant Physiol; 2005 Jan; 137(1):199-208. PubMed ID: 15618424
    [TBL] [Abstract][Full Text] [Related]  

  • 10. CRISPR/Cas9-mediated SlAN2 mutants reveal various regulatory models of anthocyanin biosynthesis in tomato plant.
    Zhi J; Liu X; Li D; Huang Y; Yan S; Cao B; Qiu Z
    Plant Cell Rep; 2020 Jun; 39(6):799-809. PubMed ID: 32221665
    [TBL] [Abstract][Full Text] [Related]  

  • 11. PHYTOCHROME-INTERACTING FACTOR 4 (PIF4) negatively regulates anthocyanin accumulation by inhibiting PAP1 transcription in Arabidopsis seedlings.
    Liu Z; Wang Y; Fan K; Li Z; Jia Q; Lin W; Zhang Y
    Plant Sci; 2021 Feb; 303():110788. PubMed ID: 33487363
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Transcription Factor-Mediated Control of Anthocyanin Biosynthesis in Vegetative Tissues.
    Outchkourov NS; Karlova R; Hölscher M; Schrama X; Blilou I; Jongedijk E; Simon CD; van Dijk ADJ; Bosch D; Hall RD; Beekwilder J
    Plant Physiol; 2018 Feb; 176(2):1862-1878. PubMed ID: 29192027
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of phosphate deficiency-induced anthocyanin accumulation on the expression of Solanum lycopersicum GLABRA3 (SlGL3) in tomato.
    Tominaga-Wada R; Masakane A; Wada T
    Plant Signal Behav; 2018; 13(6):e1477907. PubMed ID: 29944442
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Small tandem target mimic-mediated blockage of microRNA858 induces anthocyanin accumulation in tomato.
    Jia X; Shen J; Liu H; Li F; Ding N; Gao C; Pattanaik S; Patra B; Li R; Yuan L
    Planta; 2015 Jul; 242(1):283-93. PubMed ID: 25916310
    [TBL] [Abstract][Full Text] [Related]  

  • 15. BEL1-LIKE HOMEODOMAIN 11 regulates chloroplast development and chlorophyll synthesis in tomato fruit.
    Meng L; Fan Z; Zhang Q; Wang C; Gao Y; Deng Y; Zhu B; Zhu H; Chen J; Shan W; Yin X; Zhong S; Grierson D; Jiang CZ; Luo Y; Fu DQ
    Plant J; 2018 Jun; 94(6):1126-1140. PubMed ID: 29659108
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Overexpressing CAPRICE and GLABRA3 did not change the anthocyanin content of tomato (Solanum lycopersicum) fruit peel.
    Wada T; Onishi M; Kunihiro A; Tominaga-Wada R
    Plant Signal Behav; 2015; 10(5):e1000131. PubMed ID: 26039466
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The dominant allele Aft induces a shift from flavonol to anthocyanin production in response to UV-B radiation in tomato fruit.
    Catola S; Castagna A; Santin M; Calvenzani V; Petroni K; Mazzucato A; Ranieri A
    Planta; 2017 Aug; 246(2):263-275. PubMed ID: 28516293
    [TBL] [Abstract][Full Text] [Related]  

  • 18. SlPHL1 is involved in low phosphate stress promoting anthocyanin biosynthesis by directly upregulation of genes SlF3H, SlF3'H, and SlLDOX in tomato.
    Wu X; Liu Z; Liu Y; Wang E; Zhang D; Huang S; Li C; Zhang Y; Chen Z; Zhang Y
    Plant Physiol Biochem; 2023 Jul; 200():107801. PubMed ID: 37269822
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The bZIP transcription factor SlAREB1 regulates anthocyanin biosynthesis in response to low temperature in tomato.
    Xu Z; Wang J; Ma Y; Wang F; Wang J; Zhang Y; Hu X
    Plant J; 2023 Jul; 115(1):205-219. PubMed ID: 36999610
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Alternative Splicing in the
    Colanero S; Tagliani A; Perata P; Gonzali S
    Plant Commun; 2020 Jan; 1(1):100006. PubMed ID: 33404542
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.