These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
224 related articles for article (PubMed ID: 29566289)
21. Modulation of cortical motor networks following primed θ burst transcranial magnetic stimulation. Doeltgen SH; Ridding MC Exp Brain Res; 2011 Dec; 215(3-4):199-206. PubMed ID: 21964890 [TBL] [Abstract][Full Text] [Related]
22. Intracortical facilitation within the migraine motor cortex depends on the stimulation intensity. A paired-pulse TMS study. Cosentino G; Di Marco S; Ferlisi S; Valentino F; Capitano WM; Fierro B; Brighina F J Headache Pain; 2018 Aug; 19(1):65. PubMed ID: 30094517 [TBL] [Abstract][Full Text] [Related]
23. Impaired presynaptic inhibition in the motor cortex in Parkinson disease. Chu J; Wagle-Shukla A; Gunraj C; Lang AE; Chen R Neurology; 2009 Mar; 72(9):842-9. PubMed ID: 19255412 [TBL] [Abstract][Full Text] [Related]
24. The effects of alterations in conditioning stimulus intensity on short interval intracortical inhibition. Vucic S; Cheah BC; Krishnan AV; Burke D; Kiernan MC Brain Res; 2009 Jun; 1273():39-47. PubMed ID: 19332031 [TBL] [Abstract][Full Text] [Related]
25. High-intensity, low-frequency repetitive transcranial magnetic stimulation enhances excitability of the human corticospinal pathway. D'Amico JM; Dongés SC; Taylor JL J Neurophysiol; 2020 May; 123(5):1969-1978. PubMed ID: 32292098 [TBL] [Abstract][Full Text] [Related]
26. Linking cortical and behavioural inhibition: Testing the parameter specificity of a transcranial magnetic stimulation protocol. Tran DMD; Chowdhury NS; McNair NA; Harris JA; Livesey EJ Brain Stimul; 2020; 13(5):1381-1383. PubMed ID: 32712339 [TBL] [Abstract][Full Text] [Related]
27. Modulation of motor cortex excitability by paired peripheral and transcranial magnetic stimulation. Kumru H; Albu S; Rothwell J; Leon D; Flores C; Opisso E; Tormos JM; Valls-Sole J Clin Neurophysiol; 2017 Oct; 128(10):2043-2047. PubMed ID: 28858700 [TBL] [Abstract][Full Text] [Related]
28. Threshold Tracked Short-Interval Intracortical Inhibition More Closely Predicts the Cortical Response to Transcranial Magnetic Stimulation. Sasaki R; Semmler JG; Opie GM Neuromodulation; 2022 Jun; 25(4):614-623. PubMed ID: 35088717 [TBL] [Abstract][Full Text] [Related]
29. Two forms of short-interval intracortical inhibition in human motor cortex. Fong PY; Spampinato D; Rocchi L; Hannah R; Teng Y; Di Santo A; Shoura M; Bhatia K; Rothwell JC Brain Stimul; 2021; 14(5):1340-1352. PubMed ID: 34481097 [TBL] [Abstract][Full Text] [Related]
30. Determining optimal rTMS parameters through changes in cortical inhibition. de Jesus DR; Favalli GPS; Hoppenbrouwers SS; Barr MS; Chen R; Fitzgerald PB; Daskalakis ZJ Clin Neurophysiol; 2014 Apr; 125(4):755-762. PubMed ID: 24120314 [TBL] [Abstract][Full Text] [Related]
31. Effects of short-latency afferent inhibition on short-interval intracortical inhibition. Udupa K; Ni Z; Gunraj C; Chen R J Neurophysiol; 2014 Mar; 111(6):1350-61. PubMed ID: 24353299 [TBL] [Abstract][Full Text] [Related]
32. Somatosensory-motor cortex interactions measured using dual-site transcranial magnetic stimulation. Brown MJN; Weissbach A; Pauly MG; Vesia M; Gunraj C; Baarbé J; Münchau A; Bäumer T; Chen R Brain Stimul; 2019; 12(5):1229-1243. PubMed ID: 31043330 [TBL] [Abstract][Full Text] [Related]
33. Intracortical inhibition in the human trigeminal motor system. Jaberzadeh S; Pearce SL; Miles TS; Türker KS; Nordstrom MA Clin Neurophysiol; 2007 Aug; 118(8):1785-93. PubMed ID: 17574911 [TBL] [Abstract][Full Text] [Related]
34. Fatigue-induced changes in short-interval intracortical inhibition and the silent period with stimulus intensities evoking maximal versus submaximal responses. Brownstein CG; Espeit L; Royer N; Lapole T; Millet GY J Appl Physiol (1985); 2020 Aug; 129(2):205-217. PubMed ID: 32584668 [TBL] [Abstract][Full Text] [Related]
35. Short interval intracortical inhibition: Variability of amplitude and threshold-tracking measurements with 6 or 10 stimuli per point. Tankisi H; Cengiz B; Samusyte G; Howells J; Koltzenburg M; Bostock H Neurophysiol Clin; 2022 Apr; 52(2):170-173. PubMed ID: 35000804 [TBL] [Abstract][Full Text] [Related]
36. An optimal protocol for measurement of corticospinal excitability, short intracortical inhibition and intracortical facilitation in the rectus femoris. Brownstein CG; Ansdell P; Škarabot J; Howatson G; Goodall S; Thomas K J Neurol Sci; 2018 Nov; 394():45-56. PubMed ID: 30216757 [TBL] [Abstract][Full Text] [Related]
37. Two phases of short-interval intracortical inhibition. Roshan L; Paradiso GO; Chen R Exp Brain Res; 2003 Aug; 151(3):330-7. PubMed ID: 12802553 [TBL] [Abstract][Full Text] [Related]
38. Effect of long interval interhemispheric inhibition on intracortical inhibitory and facilitatory circuits. Udupa K; Ni Z; Gunraj C; Chen R J Physiol; 2010 Jul; 588(Pt 14):2633-41. PubMed ID: 20519316 [TBL] [Abstract][Full Text] [Related]
39. Decrease in short-latency afferent inhibition during corticomotor postexercise depression following repetitive finger movement. Miyaguchi S; Kojima S; Sasaki R; Kotan S; Kirimoto H; Tamaki H; Onishi H Brain Behav; 2017 Jul; 7(7):e00744. PubMed ID: 28729946 [TBL] [Abstract][Full Text] [Related]
40. Interactions between short-interval intracortical inhibition and short-latency afferent inhibition in human motor cortex. Alle H; Heidegger T; Kriváneková L; Ziemann U J Physiol; 2009 Nov; 587(Pt 21):5163-76. PubMed ID: 19752113 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]